## JYOTHISHMATHI INSTITUTE OF TECHNOLOGY & SCIENCE

## PPT ON AMPLITUDE MODULATION

PRESENTED BY R.Kalyani Asst.Prof, ECE Dept.

#### Amplitude Modulation

#### Modulation: What and Why?

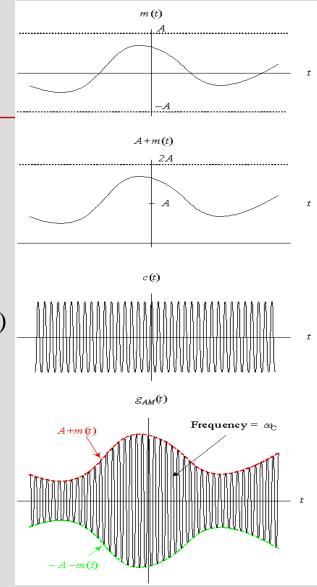
- □ The process of shifting the baseband signal to passband range is called *Modulation*.
- The process of shifting the passband signal to baseband frequency range is called *Demodulation*.
- □ Reasons for modulation:
  - Simultaneous transmission of several signals
  - Practical Design of Antennas
  - Exchange of power and bandwidth

#### Types of (Carrier) Modulation

- □ In modulation, one characteristic of a signal (generally a sinusoidal wave) known as the *carrier* is changed based on the information signal that we wish to transmit (*modulating signal*).
- That could be the amplitude, phase, or frequency, which result in Amplitude modulation (AM), Phase modulation (PM), or Frequency modulation (FM). The last two are combined as Angle Modulation

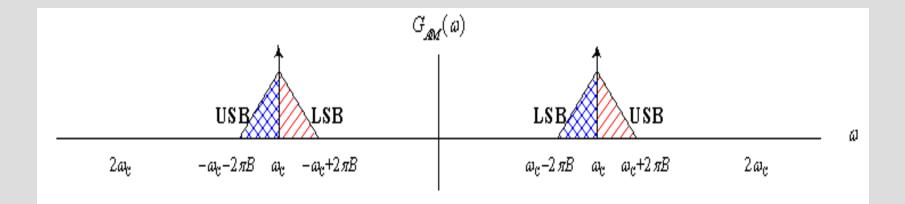
## Types of Amplitude Modulation (AM)

- Double Sideband with carrier (we will call it AM): This is the most widely used type of AM modulation. In fact, all radio channels in the AM band use this type of modulation.
- Double Sideband Suppressed Carrier (DSBSC): This is the same as the AM modulation above but without the carrier.
- □ **Single Sideband (SSB):** In this modulation, only half of the signal of the DSBSC is used.
- Vestigial Sideband (VSB): This is a modification of the SSB to ease the generation and reception of the signal.


## Definition of AM

□ Shift m(t) by some DC value "A" such that  $A+m(t) \ge 0$ . Or  $A \ge m_{\text{peak}}$ 

$$g_{AM}(t) = [A + m(t)]\cos(\omega_{C}t)$$


 $= A \cos(\omega_{c} t) + m(t) \cos(\omega_{c} t)$ 

- Called DSBWC. Here will refer to it as Full AM, or simply AM
- □ Modulation index  $\mu = m_p / A$ . □  $0 \le \mu \le 1$



#### Spectrum of AM

$$g_{AM}(t) \Leftrightarrow \pi A \left[ \delta \left( \omega - \omega_{C} \right) + \delta \left( \omega + \omega_{C} \right) \right] + \frac{1}{2} \left[ M \left( \omega - \omega_{C} \right) + M \left( \omega + \omega_{C} \right) \right]$$



#### The "Buy" and "Price" of AM

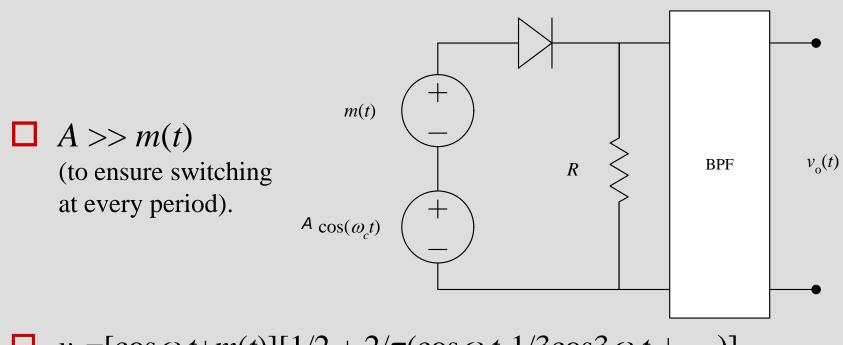
□ Buy: Simplicity in demodulation.

□ Price: Waste in Power

 $g_{AM}(t) = A\cos\omega_{c}t + m(t)\cos\omega_{c}t$ Carrier Power  $P_{c} = A^{2}/2$  (carries no information) Sideband Power  $P_{s} = P_{m}/2$  (useful) Power efficiency =  $\eta = P_{s}/(P_{c} + P_{s}) = P_{m}/(A^{2} + P_{m})$ 

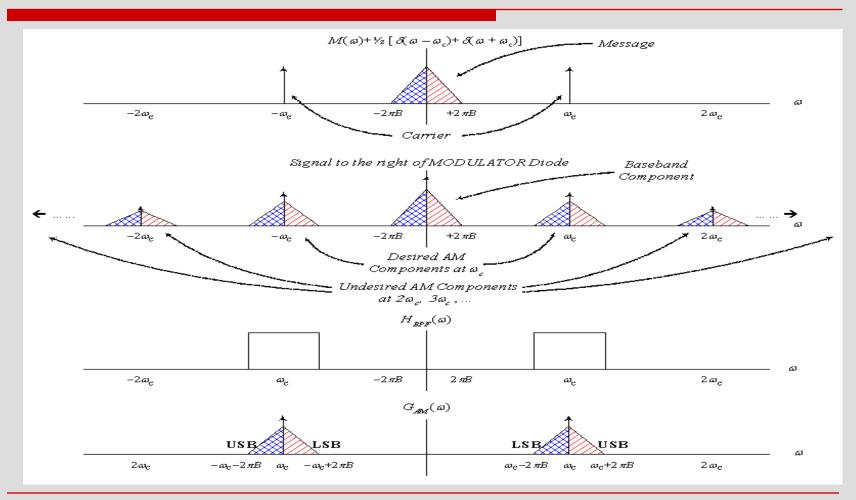


## Tone Modulation


- $\square m(t) = B\cos(\omega_m t)$
- $\Box g(t) = [A + B\cos(\omega_m t)] \cos \omega_c t = A[1 + \mu \cos(\omega_m t)] \cos \omega_c t$
- $\square \quad \eta = (B^2/2)/(B^2/2 + A^2) = \mu^2/(2 + \mu^2)$
- □ Under best conditions,  $\mu=1 \rightarrow \eta_{\text{max}} = 1/3 = 33\%$
- **D** For  $\mu = 0.5$ ,  $\eta = 11.11\%$
- □ For practical signals,  $\eta < 25\%$

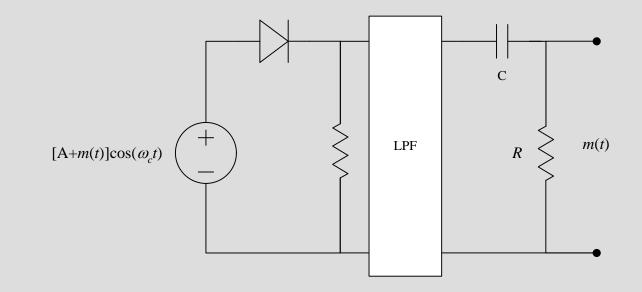
## ? Would you use AM or DSBSC?

#### Generation of AM


- AM signals can be generated by any DSBSC modulator, by using A+m(t) as input instead of m(t).
- In fact, the presence of the carrier term can make it even simpler. We can use it for switching instead of generating a local carrier.
- □ The switching action can be made by a single diode instead of a diode bridge.

#### AM Generator




 $v_R = [\cos \omega_c t + m(t)] [1/2 + 2/\pi (\cos \omega_c t - 1/3 \cos 3\omega_c t + ...)]$ = (1/2)  $\cos \omega_c t + (2/\pi)m(t) \cos \omega_c t$  + other terms (suppressed by BPF)  $v_o(t) = (1/2) \cos \omega_c t + (2/\pi)m(t) \cos \omega_c t$ 

#### AM Modulation Process (Frequency)



#### AM Demodulation: Rectifier Detector

Because of the presence of a carrier term in the received signal, switching can be performed in the same way we did in the modulator.



# **THE END**