Analog Communications

Prepared By
D.MAHESH KUMAR
Associate Prof.
ECE Dept.

Analog Communication

- ☐ Receivers for CW modulation
- ☐ Multiplexing systems
- ☐ Phase locked loops
- ☐ Television systems

Receivers for CW Modulation

Types of Receivers

- □ Early days, the radio communication suffered from cochannel and adjacent-channel interference (CCI, ACI) from other stations. Then, resonance phenomenon was exploited to select desired signal at the Rx antenna and following circuit.
- ☐ Tuned RF receiver
- Superhetrodyne
- Direct conversion

Tuned RF Receiver (TRF)

- ☐ RF amplifier + demodulator
- All gain is accomplished with RF amplifier
- ☐ For the product detector TRF, selectivity and station selection is accomplished via a tuned RF amplifier
- ☐ "Crystal radio" is classic TRF

Antenna

Superhetrodyne Receiver

- Input bandpass signal at f_c is mixed with a LO output to be hetrodyned (or "beat") down to an intermediate frequency f_{IF} before detection.
- ☐ Tuning done via changing the local oscillator
- Adjacent channels are rejected via a selective BPF, called a CS (channel select) filter in the IF stage.
- The IF stage \Rightarrow additional stage of gain \Rightarrow the RF amplifier is not required to supply all the gain \Rightarrow better stability

Superhetrodyne Equations

Superhet based on property of

$$\cos\alpha\cos\beta = \frac{1}{2}\cos(\alpha - \beta) + \frac{1}{2}\cos(\alpha + \beta)$$

Multiplier output $\Rightarrow f_{LO} \pm f_c$ (sum and difference)

We usually choose "high side conversion" $\Rightarrow f_{IF} = f_{LO} - f_c$

 \Rightarrow For fixed $f_{IF} \Rightarrow$ tuning done via varying f_{LO}

Note:
$$f_{IF} = |f_{LO} - f_c|$$

Superhet continued

Often the case we use

$$f_{LO} > f_{IF}$$

 $f_{IF} < f_c$ (the difference selected)

$$f_c = f_{LO} - f_{IF} \Rightarrow$$
 "high side conversion"
 \Rightarrow increasing $f_{LO} \Rightarrow$ increases f_c

High side conversion does cause sideband reversal for SSB

Superhetrodyne Receiver

Why the Superhetrodyne vs the Tuned RF

- ☐ Easier to design a CS filter, = a selective IF BPF, with fixed frequency for adjacent channel rejection versus a tunable filter
- □ 2 stages of gain versus 1 stage of gain ⇒ inherently more stable (i.e. it's more difficulty to design a high gain stable RF amp)

Superhets and Images (spurious signals)

Recall mixer output
$$f_{IF} = |f_{LO} - f_c| \Rightarrow$$

$$\Rightarrow f_{IF} = f_{LO} - f_c \text{ and } f_{IF} = f_c - f_{LO}$$

For fixed $f_{IF} \Rightarrow$

$$f_c = f_{LO} - f_{IF}$$

and

$$f_c = f_c + 2 f_{IF} \Rightarrow \text{image frequency}$$

Superhet receiver waveforms

By D.Mahesh Kumar Associate Prof.

The signal at the image frequency f_c is also passed through the IF BPF

 \Rightarrow the listener may not be certain of the input signal's frequency, is it f_c or f_c ?

Image Example

Broadcast AM receiver with $f_{IF} = 455$ kHz, $f_c = 1000$ kHz $\Rightarrow f_{LO} = 1455$ kHz.

$$|f_{LO} - f_c| = |1455-1000| = 455 \text{ kHz} \Rightarrow \text{ expected signal is accepted}$$

What other input frequency is accepted?

With the above values of $f_{LO} = 1455$ and $f_{IF} = 455 \Rightarrow f_c = 1910$ kHz

Test: If the receiver input is 1910 kHz \Rightarrow multiplier output is $\left| f_{LO} - f_c \right| = \left| 1455 - 1910 \right| = 455 \text{ kHz} \Rightarrow \text{ image signal is accepted}$

Image Minimization

- □ fd
- ☐ Add selective BPF or LPF at front end, called an IR (image reject) filter
- ☐ Use higher value of IF in combination with a lower order LPF or BPF at front end

Miscellaneous for Superhet

LO Harmonics
 The superhet is further subject to spurious inputs if the local oscillator has harmonics.

 Harmonics may leak into the mixer stage.

- Interfering signal feedthrough by nonlinearity of IF amp
- Gain Control an automatic gain control (AGC) an automatic volume control (AVG) in an AM radio an automatic frequency control (AFC) in an FM radio

Direct Conversion Receivers

- ☐ TRF using a product detector
- Station selected via the local oscillator
- ☐ Selectivity for adjacent channel rejection in LPF stage
- ☐ Also called zero-IF or homodyne receiver
- ☐ Strictly speaking there are no images, but is subject to interference on the other sideband (see next 2 slides)
- ☐ Simple design and is often used

Direct conversion receiver

Direct conversion receiver with opposite sideband rejection

Double Conversion Receiver

- ☐ Additional IF stage, first stage with high IF for better image rejection.
- Put adjacent channel selectivity in the second IF stage BPF
- Additional gain
- ☐ Add a frequency converter to an existing receiver
- Can be subject to more spurious inputs

Double conversion receiver

Hetrodyne Receiver

- ☐ Superhet without the RF amplifier
- Often used at microwave frequencies with diode mixer

Receiver Performance Specifications

- ☐ **Sensitivity**: minimum input voltage required for a given signal-to-noise ratio
- □ **Dynamic range**: ability to retain linearity for varying signal strengths
- Selectivity: ability to reject adjacent channel signals
- Noise figure: how much noise does the receiver add to the signal
- ☐ Image rejection

Scanning Spectrum Analyzer

- □ Power Spectral Density (PSD)
- Spectrum Analyzer
 - Scanning spectrum analyzer
 - DFT/FFT spectrum analyzer

Scanning spectrum analyzer (a) block diagram (b) amplitude response

By D.Mahesh Kumar Associate Prof.

Multiplexing Systems

Multiplexing Systems

- Ordinarily a means to have several users share a channel
- ☐ A means of **diversity** to improve the reliability of the signal to reach its destination
- ☐ A means to achieve Hartley-Shannon by dividing the message in pieces, send it over different means and thereby maximize its transmission rate

Multiplexing Methods

- ☐ Frequency-division multiplexing (FDM)
- ☐ Time-division multiplexing (TDM)
- Quadrature-carrier multiplexing or quadrature amplitude modulation (QAM)
- ☐ Code-division multiplexing (see Chap. 15)
- Spatial multiplexing
 - Antenna direction
 - Signal polarization

Q. Hinted by rainbow, explain how frequency-division multiplexing works.

7.2.1 Frequency-Division Multiplexing (FDM) and Frequency-Division Multiple Access (FDMA)

- ☐ Each user or message carrier is assigned a specific frequency
- ☐ Simple example is the FM broadcast band with multiple stations transmitting simultaneously from 88.1 to 107.9 MHz in 200 kHz increments.
- □ Spacing of stations is tradeoff between adjacent channel interference
 (ACI) versus # of users assigned to a channel ⇒ Quality of service versus economics.
- \Box Guard bands = spacing between users

FDM transmitter (a) input spectra & block diagram (b) baseband FDM spectrum

FDM Receiver

By D.Mahesh Kumar Associate Prof.

FDMA satellite system

FM stereo multiplexing (a) transmitter (b) baseband spectrum

By D.Mahesh Kumar Associate Prof.

FM stereo multiplex receiver

Other FDM Examples

- ☐ AM, FM, television broadcasts
- ☐ GSM, a 2G cellular standard, and other wireless phone technologies (often a hybrid with TDM and/or CDM)

Quadrature-Carrier Multiplexing

Orthogonality property permits 2 signals to simultaneously be transmitted on same frequency.

Two signals $x_1(t)$ and $x_2(t)$ transmitted using orthogonal carrier signals such that

$$x_c(t) = A_{c1}x_1(t)\cos\omega_c t \pm A_{c2}x_2(t)\sin\omega_c t$$

At the receiver

$$x_c(t) \times \cos \omega_c t + LPF \rightarrow x_1(t)$$

and

$$x_c(t) \times \sin \omega_c t + LPF \rightarrow x_2(t)$$

Quadrature-carrier multiplexing

an analog quadrature amplitude modulation (QAM)

By D.Mahesh Kumar Associate Prof.

By using additional carriers that are mutually orthogonal the quadrature-carrier method can be extended to become Orthogonal Frequency Division Multiplexing (OFDM)

Time Division Multiplexing (TDM) and Time Division Multiple Access (TDMA)

- ☐ Sample different waveforms and interleave them in time so they appear to be sent simultaneously
- ☐ Guard times to prevent **intersymbol interference** (ISI)

☐ Time diversity

TDM system (a) block diagram (b) waveforms

By D.Mahesh Kumar Associate Prof.

TDM Equations

A particular signal is sampled at $f_s \ge 2W \implies T_s \le \frac{1}{2W}$

With TDM and M signals \Rightarrow channel date rate $\Rightarrow r = Mf_s$ and r = 2MW

To reduce intersymbol interference (IS), we have guard times between message bits

Each set of M message bits makes up a frame

TDM synchronization markers

By D.Mahesh Kumar Associate Prof.

(a) TDM transmitter with baseband filtering (b) baseband waveform

Intersymbol Interference in TDM

 $T_g = guard time$

Postcursor from previous symbol

By D.Mahesh Kumar Associate Prof.

TDM/PPM With Guard Times And Synchronization Markers

TDM and FDM Comparison

- ☐ Many systems such as wireless phones are a hybrid of FDM and TDM or FDM, and CDM
- ☐ Without taking implementation issues into account, they are all the same.
- □ When 2G GSM was designed,
 - TDM lends itself to digital systems and low cost VLSI implementation
 - With submultiplexers, TDM can more easily accommodate different types of signals
 - Wideband fading ⇒ may only affect some TDM pulses, but may all FDM channels
- ☐ When 4G LTE was designed,
 - OFDM ...

Phase Locked Loops (PLL)

- Modulators,
- Demodulators,
- Frequency Synthesizers,
- Multiplexers, etc.

PLL Operations

- ☐ To lock or synchronize the instantaneous angle of a
 - VCO output to that of an external bandpass signal
- ☐ Phase comparison is performed.
- □ DSB detection (Costas loop)
- ☐ Frequency synchronizer

PLL Applications

- ☐ Synchronous detection
- ☐ FM and PM detection
- □ DSB detection (Costas loop)
- ☐ Frequency synchronizer

Phase comparators (a) analog (b) digital

By D.Mahesh Kumar Associate Prof.

Phase-locked loop

Note: $\sin[\varepsilon(t)] \approx \varepsilon(t)$ if $|\varepsilon(t)| < 1$

PLL pilot filter with two phase discriminators

Costas PLL System For Synchronous Detection (DSB)*

*Cannot be used to detect SSB

Adjustable Local Oscillator Using a Frequency Synthesizer (e.g. for double conversion receiver)

Adjustable LO in increments of 0.01MHz

Frequency synthesizer with fixed and adjustable outputs

