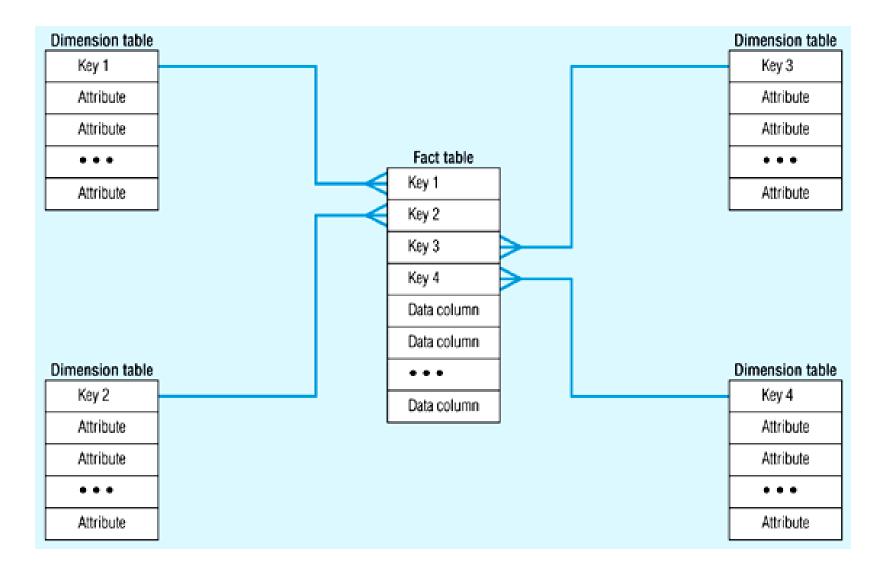
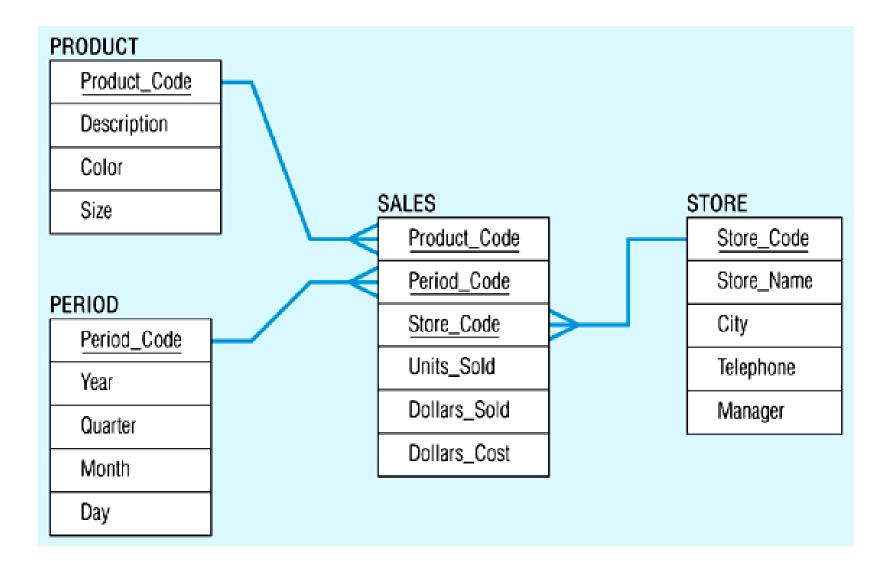
MOLAP: Dimensional Modeling


JYOTHISHMATHI INSTITUTE OF TECHNOLOGY AND SCIENCE

Prepared By Ravindar Mogili

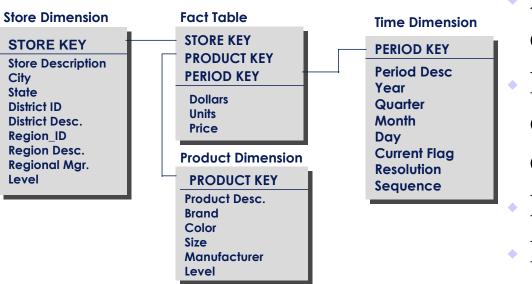

MOLAP: Dimensional Modeling

- MDDB: a special-purpose data model
- Facts stored in multi-dimensional arrays
- Dimensions used to index array
- Sometimes on top of relational DB
- Products
 - Pilot, Arbor Essbase, Gentia

Star Schema (in RDBMS)

Star Schema Example

Star Schema with Sample Data

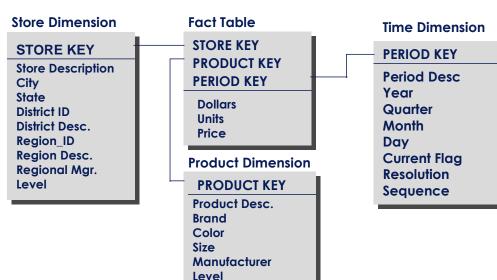

Product <u>Code</u> 100 110 125 ••••	Description Sweater Shoes Gloves	Color Blue Brown Tan	Size 40 10 1/2 M					Period _Code 001 002 003 •••
			Product _Code			Units _Sold	Dollars _Sold	Dollars _Cost
		Sales	110 125 100 110 100	002 003 001 002 003	S1 S2 S1 S3 S2	30 50 40 40 30	1500 1000 1600 2000 1200	1200 600 1000 1200 750
			Store _Code	Store _Name	City	Tele	phone	Manager
		Store	S1 S2 S3	Jan's Bill's Ed's	San Antonic Portland Boulder	943-6	92-1400 81-2135 96-8037	Burgess Thomas Perry
			ı					

hoir

Period _Code	Year	Quarter	Month
001	1999	1	4
002	1999	1	5
003	1999	1	6

5	

The "Classic" Star Schema



- A single fact table, with detail and summary data
- Fact table primary key has only one key column per dimension
- Each key is generated
- Each dimension is a single table, highly denormalized

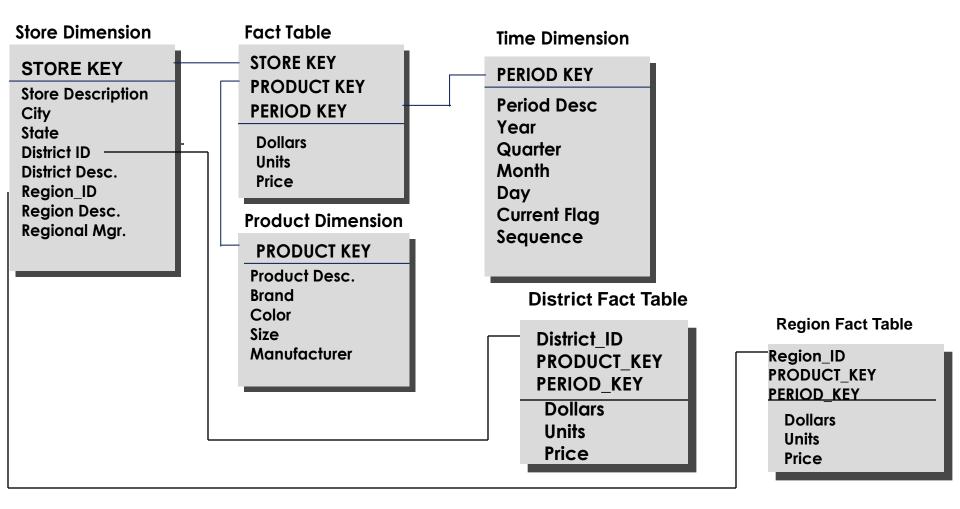
Benefits: Easy to understand, easy to define hierarchies, reduces # of physical joins, low maintenance, very simple metadata

Drawbacks: Summary data in the fact table yields poorer performance for summary levels, huge dimension tables a problem

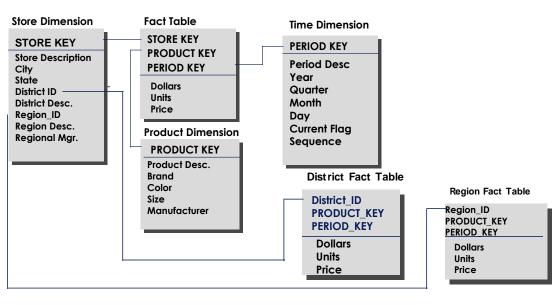
The "Classic" Star Schema

The biggest drawback: dimension tables must carry a *level* indicator for every record and every query must use it. In the example below, without the level constraint, keys for all stores in the NORTH region, including aggregates for region and district will be pulled from the fact table, resulting in error.

Example:


Select A.STORE_KEY, A.PERIOD_KEY, A.dollars from Fact_Table A

where A.STORE_KEY in (select STORE_KEY from Store_Dimension B where region = "North" and Level = 2) Level is needed whenever aggregates are stored with detail facts.


The "Level" Problem

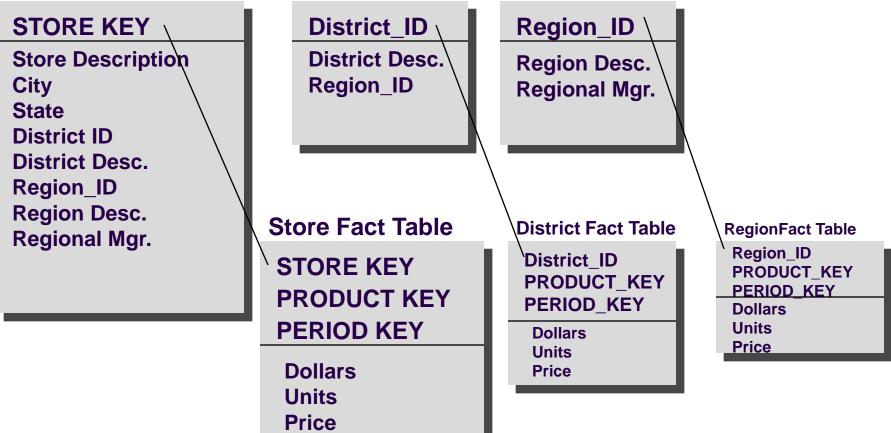
- Level is a problem because because it causes potential for error. If the query builder, human or program, forgets about it, perfectly reasonable looking WRONG answers can occur.
- One alternative: the FACT CONSTELLATION model...

The "Fact Constellation" Schema

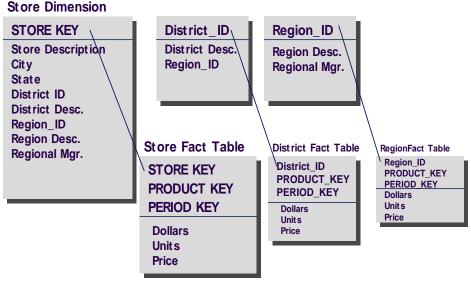
The "Fact Constellation" Schema

In the Fact Constellations, aggregate tables are created separately from the detail, therefor it is impossible to pick up, for example, Store detail when querying the District Fact Table.

Major Advantage: No need for the "Level" indicator in the dimension tables, since no aggregated data is stored with lower-level detail

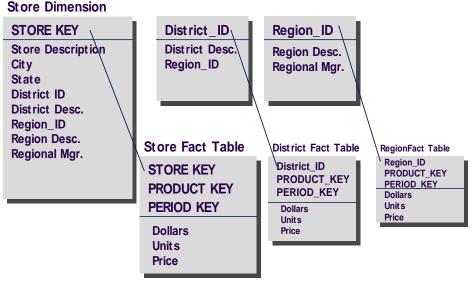

Disadvantage: Dimension tables are still very large in some cases, which can slow performance; front-end must be able to detect existence of aggregate facts, which requires more extensive metadata

Another Alternative to "Level"


- Fact Constellation is a good alternative to the Star, but when dimensions have very high cardinality, the sub-selects in the dimension tables can be a source of delay.
- An alternative is to normalize the dimension tables by attribute level, with each smaller dimension table pointing to an appropriate aggregated fact table, the "Snowflake Schema" ...

The "Snowflake" Schema

Store Dimension


The "Snowflake" Schema

- No LEVEL in dimension tables
- Dimension tables are normalized by decomposing at the attribute level
- Each dimension table has one key for each level of the dimensionís hierarchy
- The lowest level key joins the dimension table to both the fact table and the lower level attribute table

How does it work? The best way is for the query to be built by understanding which summary levels exist, and finding the proper snowflaked attribute tables, constraining there for keys, then selecting from the fact table.

The "Snowflake" Schema

- Additional features: The original Store Dimension table, completely denormalized, is kept intact, since certain queries can benefit by its allencompassing content.
- In practice, start with a Star Schema and create the "snowflakes" with queries. This eliminates the need to create separate extracts for each table, and referential integrity is inherited from the dimension table.

Advantage: Best performance when queries involve aggregation

Disadvantage: Complicated maintenance and metadata, explosion in the number CS 32 tables in the database