

### JYOTHISHMATHI INSTITUTE OF TECHNOLOGY & SCIENCE Sub: HEAT TRANSFER III B TECH-II SEM (A.Y:2018-19)

### **RADIATION HEAT TRANSFER**

### BY P.DEVENDAR (Asst.Prof)

Department Of Mechanical Engineering.

### **Blackbody Radiation**

- Blackbody a perfect emitter & absorber of radiation
- Emits radiation uniformly in all directions no directional distribution it's <u>diffuse</u>
- Joseph Stefan (1879)- total radiation emission per unit time & area over all wavelengths and in all directions:

$$E_b = \sigma T^4 \left( W / m^2 \right)$$

•  $\sigma$ =Stefan-Boltzmann constant =5.67 x10<sup>-8</sup> W/m<sup>2</sup>K<sup>4</sup>

## **Planck's Distribution Law**

- Sometimes we're interested in radiation at a certain wavelength
- Spectral blackbody emissive power  $(E_{b\lambda}) =$  "amount of radiation energy emitted by a blackbody at an absolute temperature T per unit time, per unit surface area, and per unit wavelength about the wavelength  $\lambda$ ."

### **Planck's Distribution Law**

For a surface in a vacuum or gas

$$E_{b\lambda}(T) = \frac{C_1}{\lambda^5 \left[ exp \left( C_2 / \lambda T \right) - 1 \right]} \quad \left( W / m^2 \cdot \mu m \right)$$

where

$$C_1 = 2 \pi h c_o^2 = 3.742 \ x 10^8 \ W \cdot \mu m^4 / m^2$$
  
 $C_2 = h c_o / k = 1.439 \ x 10^4 \ \mu m \cdot K$   
 $k = 1.3805 \ x 10^{-23} \ J/K = Boltzmann' \ s \ constant$ 

Other media: replace C<sub>1</sub> with C<sub>1</sub>/n<sup>2</sup>
Integrating this function over all λ gives us the equation for E<sub>b</sub>.



### Radiation Distribution

- Radiation is a continuous function of wavelength
- Radiation increases with temp.
- At higher temps, more radiation is at shorter wavelengths.
- Solar radiation peak is in the visible range.

### Wien's Displacement Law

Peak can be found for different temps using Wien's Displacement Law:

$$(\lambda T)_{max \ power} = 2897 \ .5 \ \mu m \cdot K$$

Note that color is a function of absorption & reflection, not emission

### **Blackbody Radiation Function**

• Use blackbody radiation function,  $F_{\lambda}$ 

$$\lambda \int E_{b\lambda}(T) d\lambda$$
$$F_{\lambda}(T) = \frac{0}{\sigma T^{4}}$$

 If we want radiation between λ<sub>1</sub> & λ<sub>2</sub>,

$$F_{\lambda_{1}-\lambda_{2}}(T) = F_{\lambda_{2}}(T) - F_{\lambda_{1}}(T)$$



## Surface Emission

Spectral, directional emissivity

 $\varepsilon_{\lambda,\theta}(\lambda,\theta,\phi,T) \equiv \frac{I_{\lambda,e}(\lambda,\theta,\phi,T)}{I_{\lambda,b}(\lambda,T)}$ 

Total, directional emissivity

Spectral, hemispherical emissivity

 $\varepsilon_{\theta}(\theta, \phi, T) \equiv \frac{I_e(\theta, \phi, T)}{I_h(T)}$ 





### Surface Emission

Spectral, hemispherical emissivity

$$\varepsilon_{\lambda}(\lambda, T) \equiv \frac{E_{\lambda}(\lambda, T)}{E_{\lambda,b}(\lambda, T)}$$

Substituting spectral emissive power

$$\varepsilon_{\lambda}(\lambda, T) = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,e}(\lambda, \theta, \phi, T) \cos \theta \sin \theta \, d\theta \, d\phi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,b}(\lambda, T) \cos \theta \sin \theta \, d\theta \, d\phi}$$

## Surface Emission

Total, hemispherical emissivity

Total, directional emissivity Normal emissivity predictable



### Total, normal emissivity



Temperature dependence of the total, normal emissivity  $\varepsilon_n$  of selected

# Absorption, Reflection, and Transmission

 $G_{\lambda} = G_{\lambda,\text{ref}} + G_{\lambda,\text{abs}} + G_{\lambda,\text{tr}}$ 



Absorption, reflection, and transmission processes associated with a semitransparent medium.

## Absorptivity

Spectral, directional absorptivity

$$\alpha_{\lambda,\theta}(\lambda,\theta,\phi) \equiv \frac{I_{\lambda,i,\mathrm{abs}}(\lambda,\theta,\phi)}{I_{\lambda,i}(\lambda,\theta,\phi)}$$

### Spectral, hemispherical absorptivity



Total, hemispherical absorptivity



## Reflectivity

Spectral, directional reflectivity



### Spectral, hemispherical reflectivity



Total, hemispherical reflectivity



# Reflectivity





#### Diffuse and specular reflection.

### Transmissivity

Spectral, hemispherical transmissivity



#### Total, hemispherical reflectivity



### **Special Considerations**

Transparent medium

$$\rho + \alpha + \tau = 1$$
  
Opaque

$$\rho + \alpha = 1$$

### Kirchhoff's Law



 $\omega = 3$ 

Radiative exchange in an isothermal enclosure.

$$\frac{E_1(T_s)}{\alpha_1} = E_b(T_s)$$

No real surface can have an emissive power exceeding that of a black surface at the same temperature.

# ANY QUIRIES ???