

JYOTHISHMATHI INSTITUTE OF TECHNOLOGY AND SCIENCE

TOPIC: Combinational Circuits

Sub: Switching Theory and Logic Design

Nuthi.Raju Asst.Prof Dept. Of ECE.

Combinational Circuits

A combinational
 circuits of input values

2 possible combinations

- Specific functions
- Adders, subtractors, comparators, decoders, encoders, and multiplexers
 - MSI circuits or standard cells

Analysis Procedure

- Step 1: Label all gate outputs that are a function of input variables with arbitrary symbols – but with meaningful names. Determine the Boolean functions for each gate output.
- Step 2: Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates.
- Step 3: Repeat the process outlined in step 2 until the outputs of the circuit are obtained.
- Step 4: By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables.

Analysis Procedure Example

A straight-forward procedure

Analysis Procedure Example

- Step 1:
 - $F_2 = AB + AC + BC$
 - $T_1 = A + B + C$
 - $T_2 = ABC$
- Ste 2:
 P T₃ = F₂ T₁
- Step 3:
 - $F_1 = T_3 + T_2$
- Step 4:
 - $F_1 = T_3 + T_2 = F_2 T_1 + ABC$
 - = (AB+AC+BC)'(A+B+C)+ABC
 - = (A'+B')(A'+C')(B'+C')(A+B+C)+ABC
 - = (A'+B'C')(AB'+AC'+BC'+B'C)+ABC
 - = A'BC'+A'B'C+AB'C'+ABC

Truth Table

Table 4.1 *Truth Table for the Logic Diagram of Fig. 4.2*

A	В	C	F ₂	F ₂	<i>T</i> ₁	T ₂	T ₃	<i>F</i> ₁
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

Decoder

- ♦ An *n*-to-*m* decoder
 - a binary code of n bits = 2^n distinct information
 - n input variables; up to 2 output lines
 - only one output can be active (high) at any time

Table 4.6 *Truth Table of a Three-to-Eight-Line Decoder*

	Inputs	1				Out	puts			
x	y	z	Do	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇
0	0	0	1.	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

4x16 Decoder

Expansion

two 3-to-8 decoder: a 4-to-16 decoder

 4×16 decoder constructed with two 3×8 decoders

4-to-1-Line Multiplexer

S_1	S_0	Y
0 0 1 1	0 1 0 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

(b) Function table

(a) Logic diagram