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Phases of compiler



Overview

• Compiler phases
– Lexical analysis

– Syntax analysis

– Semantic analysis

– Intermediate (machine-independent) code 
generation

– Intermediate code optimization

– Target (machine-dependent) code generation

– Target code optimization
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Source program with macros

Preprocessor

Source program

Compiler

Target assembly program

assembler

Relocatable machine code

linker

Absolute machine code
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• What is a compiler?

– A program that reads a program written in one 
language (source language) and translates it 
into an equivalent program in another 
language (target language).

– Traditionally, the source language is a high level 
language and  the target language is a low level 
language (machine code).
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Compiler Front- and Back-end
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Scanner: Lexical Analysis
• Lexical analysis breaks up a program into 

tokens
– Grouping characters into non-separatable units (tokens)

– Changing a stream to characters to a stream of tokens
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program gcd (input, output);

var i, j : integer;

begin

read (i, j);

while i <> j do

if i > j then i := i - j else j := j - i;

writeln (i)

end.

program gcd   (    input  ,    output    )      ;

var i     ,    j      :    integer   ;      begin

read     (     i    ,      j    )         ;      while

i        <>    j    do     if i         >      j

then    i     :=   i      - j         else  j

:=       i     - i      ; writeln   (      i

)        end   .



Scanner: Lexical Analysis
• What kind of errors can be reported by lexical 

analyzer?

A = b + @3;
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Parser: Syntax Analysis

• Checks whether the token stream meets the 
grammatical  specification of the language and 
generates the syntax tree.

• A grammar of a programming language is 
typically described by a context free grammer, 
which also defines the structure of the parse 
tree.
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Context-Free Grammars

• A context-free grammar defines the syntax of a programming language

• The syntax defines the syntactic categories for language constructs
– Statements

– Expressions

– Declarations

• Categories are subdivided into more detailed categories
– A Statement is a

• For-statement

• If-statement

• Assignment
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Parsing examples

• Pos = init + / rate * 60  → id1 = id2 + / id3 * const →
syntax error (exp ::= exp + exp cannot be reduced).

• Pos = init + rate * 60 → id1 = id2 + id3 * const →
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:=
id1 +

id2 *
id3 60



Semantic Analysis

• Semantic analysis is applied by a compiler to discover the 
meaning of a program by analyzing its parse tree or 
abstract syntax tree.

• A program without grammatical errors may not always 
be correct program.
– pos = init + rate * 60

– What if pos is a class while init and rate are integers?

– This kind of errors cannot be found by the parser
– Semantic analysis finds this type of error and ensure 

that the program has a meaning.
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Semantic Analysis

• Static semantic checks (done by the compiler) are performed at compile 
time
– Type checking

– Every variable is declared before used

– Identifiers are used in appropriate contexts

– Check subroutine call arguments

– Check labels

• Dynamic semantic checks are performed at run time, and the compiler 
produces code that performs these checks
– Array subscript values are within bounds

– Arithmetic errors, e.g. division by zero

– Pointers are not dereferenced unless pointing to valid object

– A variable is used but hasn't been initialized

– When a check fails at run time, an exception is raised
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Semantic Analysis and Strong Typing

• A language is strongly typed "if (type) errors are always 
detected"
– Errors are either detected at compile time or at run time
– Examples of such errors are listed on previous slide
– Languages that are strongly typed are Ada, Java, ML, 

Haskell
– Languages that are not strongly typed are Fortran, Pascal, 

C/C++, Lisp
• Strong typing makes language safe and easier to use, 

but potentially slower because of dynamic semantic 
checks

• In some languages, most (type) errors are detected late 
at run time which is detrimental to reliability e.g. early 
Basic, Lisp, Prolog, some script languages
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Code Generation and Intermediate 
Code Forms

• A typical intermediate form of 
code produced by the semantic 
analyzer is an abstract syntax tree 
(AST)

• The AST is annotated with useful 
information such as pointers to 
the symbol table entry of 
identifiers
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Example AST for the

gcd program in Pascal



Code Generation and Intermediate 
Code Forms

– Other intermediate code forms
• intermediate code is something that is both close to the 

final machine code and easy to manipulate (for 
optimization). One example is the three-address code: 

dst = op1   op   op2
• The three-address code for the assignment statement:

temp1 = 60
temp2 = id3 + temp1
temp3 = id2 + temp2
id1 = temp3

– Machine-independent Intermediate code 
improvement

temp1 = id3 * 60.0
id1 = id2 + temp1
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Target Code Generation and 
Optimization

• From the machine-independent form 
assembly or object code is generated by the 
compiler

MOVF id3, R2

MULF #60.0, R2

MOVF id2, R1

ADDF R2, R1

MOVF R1, id1

• This machine-specific code is optimized to 
exploit specific hardware features

2/27/2020 COP4020 Spring 2014 17



Summary

• Compiler front-end: lexical analysis, syntax 
analysis, semantic analysis

– Tasks: understanding the source code, making 
sure the source code is written correctly

• Compiler back-end:  Intermediate code 
generation/improvement, and Machine code 
generation/improvement

– Tasks: translating the program to a semantically 
the same program (in a different language).
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