
JYOTHISHMATHI INSTITUTE OF TECHNOLOGY & SCIENCE, KARIMNAGAR

COMPILER DESIGN
G.RANJITH KUMAR
ASST. PROFESSOR

CSE DEPT.

Phases of compiler

Overview

• Compiler phases
– Lexical analysis

– Syntax analysis

– Semantic analysis

– Intermediate (machine-independent) code
generation

– Intermediate code optimization

– Target (machine-dependent) code generation

– Target code optimization

2/27/2020 COP4020 Spring 2014 3

Source program with macros

Preprocessor

Source program

Compiler

Target assembly program

assembler

Relocatable machine code

linker

Absolute machine code

2/27/2020 COP4020 Spring 2014 4

• What is a compiler?

– A program that reads a program written in one
language (source language) and translates it
into an equivalent program in another
language (target language).

– Traditionally, the source language is a high level
language and the target language is a low level
language (machine code).

2/27/2020 COP4020 Spring 2014 5

Compiler Front- and Back-end

2/27/2020 COP4020 Spring 2014 6

Semantic Analysis

and Intermediate

Code Generation

Scanner

(lexical analysis)

Parser

(syntax analysis)

Machine-

Independent Code

Improvement

Target Code

Generation

Machine-Specific

Code Improvement

Source program (character stream)

Tokens

Parse tree

Abstract syntax tree or

other intermediate form

Modified intermediate form

Assembly or object code

Modified assembly or object code

Abstract syntax tree or

other intermediate form

F
ro

n
t

en
d

a
n

a
ly

si
s

B
a
ck

 e
n

d

sy
n

th
es

is

Scanner: Lexical Analysis
• Lexical analysis breaks up a program into

tokens
– Grouping characters into non-separatable units (tokens)

– Changing a stream to characters to a stream of tokens

2/27/2020 COP4020 Spring 2014 7

program gcd (input, output);

var i, j : integer;

begin

read (i, j);

while i <> j do

if i > j then i := i - j else j := j - i;

writeln (i)

end.

program gcd (input , output) ;

var i , j : integer ; begin

read (i , j) ; while

i <> j do if i > j

then i := i - j else j

:= i - i ; writeln (i

) end .

Scanner: Lexical Analysis
• What kind of errors can be reported by lexical

analyzer?

A = b + @3;

2/27/2020 COP4020 Spring 2014 8

Parser: Syntax Analysis

• Checks whether the token stream meets the
grammatical specification of the language and
generates the syntax tree.

• A grammar of a programming language is
typically described by a context free grammer,
which also defines the structure of the parse
tree.

2/27/2020 COP4020 Spring 2014 9

Context-Free Grammars

• A context-free grammar defines the syntax of a programming language

• The syntax defines the syntactic categories for language constructs
– Statements

– Expressions

– Declarations

• Categories are subdivided into more detailed categories
– A Statement is a

• For-statement

• If-statement

• Assignment

2/27/2020 COP4020 Spring 2014 10

Parsing examples

• Pos = init + / rate * 60 → id1 = id2 + / id3 * const →
syntax error (exp ::= exp + exp cannot be reduced).

• Pos = init + rate * 60 → id1 = id2 + id3 * const →

2/27/2020 COP4020 Spring 2014 11

:=
id1 +

id2 *
id3 60

Semantic Analysis

• Semantic analysis is applied by a compiler to discover the
meaning of a program by analyzing its parse tree or
abstract syntax tree.

• A program without grammatical errors may not always
be correct program.
– pos = init + rate * 60

– What if pos is a class while init and rate are integers?

– This kind of errors cannot be found by the parser
– Semantic analysis finds this type of error and ensure

that the program has a meaning.

2/27/2020 COP4020 Spring 2014 12

Semantic Analysis

• Static semantic checks (done by the compiler) are performed at compile
time
– Type checking

– Every variable is declared before used

– Identifiers are used in appropriate contexts

– Check subroutine call arguments

– Check labels

• Dynamic semantic checks are performed at run time, and the compiler
produces code that performs these checks
– Array subscript values are within bounds

– Arithmetic errors, e.g. division by zero

– Pointers are not dereferenced unless pointing to valid object

– A variable is used but hasn't been initialized

– When a check fails at run time, an exception is raised

2/27/2020 COP4020 Spring 2014 13

Semantic Analysis and Strong Typing

• A language is strongly typed "if (type) errors are always
detected"
– Errors are either detected at compile time or at run time
– Examples of such errors are listed on previous slide
– Languages that are strongly typed are Ada, Java, ML,

Haskell
– Languages that are not strongly typed are Fortran, Pascal,

C/C++, Lisp
• Strong typing makes language safe and easier to use,

but potentially slower because of dynamic semantic
checks

• In some languages, most (type) errors are detected late
at run time which is detrimental to reliability e.g. early
Basic, Lisp, Prolog, some script languages

2/27/2020 COP4020 Spring 2014 14

Code Generation and Intermediate
Code Forms

• A typical intermediate form of
code produced by the semantic
analyzer is an abstract syntax tree
(AST)

• The AST is annotated with useful
information such as pointers to
the symbol table entry of
identifiers

COP4020 Spring 2014 152/27/2020

Example AST for the

gcd program in Pascal

Code Generation and Intermediate
Code Forms

– Other intermediate code forms
• intermediate code is something that is both close to the

final machine code and easy to manipulate (for
optimization). One example is the three-address code:

dst = op1 op op2
• The three-address code for the assignment statement:

temp1 = 60
temp2 = id3 + temp1
temp3 = id2 + temp2
id1 = temp3

– Machine-independent Intermediate code
improvement

temp1 = id3 * 60.0
id1 = id2 + temp1

COP4020 Spring 2014 162/27/2020

Target Code Generation and
Optimization

• From the machine-independent form
assembly or object code is generated by the
compiler

MOVF id3, R2

MULF #60.0, R2

MOVF id2, R1

ADDF R2, R1

MOVF R1, id1

• This machine-specific code is optimized to
exploit specific hardware features

2/27/2020 COP4020 Spring 2014 17

Summary

• Compiler front-end: lexical analysis, syntax
analysis, semantic analysis

– Tasks: understanding the source code, making
sure the source code is written correctly

• Compiler back-end: Intermediate code
generation/improvement, and Machine code
generation/improvement

– Tasks: translating the program to a semantically
the same program (in a different language).

18

