
JYOTHISHMATHI INSTITUTE OF TECHNOLOGY & SCIENCE
Nustulapur, Karimnagar – 505481.

Data Structures through C++

II Year B.Tech. I Sem.

2018-19

N.MAHESH KUMAR

ASSOCIATE PROFESSOR

CSE

Asymptotic Analysis

Why performance analysis?
There are many important things that should be

taken care of, like

• user friendliness,

• modularity,

• security,

• maintainability, etc.

Why to worry about performance?
The answer to this is simple, we can have all the
above things only if we have performance. So
performance is like currency through which we
can buy all the above things.

Asymptotic notations
• The main idea of asymptotic analysis is to have a

measure of efficiency of algorithms that

– Doesn’t depend on machine specific constants,

– Doesn’t require algorithms to be implemented

– Time taken by programs to be compared.

• Asymptotic notations are mathematical tools to
represent time complexity of algorithms for
asymptotic analysis.

• The following 3 asymptotic notations are mostly
used to represent time complexity of algorithms.

Asymptotic Complexity

• Two important reasons to determine operation
and step counts

1. To compare the time complexities of two programs
that compute the same function

2. To predict the growth in run time as the instance
characteristic changes

• Neither of the two yield a very accurate
measure
– Operation counts: focus on “key” operations and

ignore all others
– Step counts: the notion of a step is itself inexact

• Asymptotic complexity provides meaningful
statements about the time and space
complexities of a program

Asymptotic Notation

• Describes the behavior of the time or space
complexity for large instance characteristic

• Big Oh (O) notation provides an upper bound for
the function f

• Omega (Ω) notation provides a lower-bound

• Theta (Q) notation is used when an algorithm can
be bounded both from above and below by the
same function

Big “oh’’ --- O
• The Big O notation defines an upper bound of an algorithm, it

bounds a function only from above
• In typical usage, the formal definition of O notation is not used directly;

rather, the O notation for a function f(x) is derived by the following
simplification rules:

• If f(x) is a sum of several terms, the one with the largest growth
rate is kept, and all others omitted.

• If f(x) is a product of several factors, any constants (terms in the
product that do not depend on x) are omitted.

http://d2o58evtke57tz.cloudfront.net/wp-content/uploads/BigO.png

• Definition: [Big “oh’’]

– f(n) = O(g(n)) iff there exist positive constants c and n0 such
that f(n)  cg(n) for all n, n  n0.

• Examples

– f(n) = 3n+2

• 3n + 2 <= 4n, for all n >= 2, 3n + 2 =  (n)

Omega - 

•  notation provides an asymptotic lower bound.

• Omage notation can be useful when we have lower
bound on time complexity of an algorithm.

• the Omega notation is the least used notation among all
three.

http://d2o58evtke57tz.cloudfront.net/wp-content/uploads/BigOmega.png

• Definition: [Omega]

– f(n) = (g(n)) (read as “f of n is omega of g of n”) iff there
exist positive constants c and n0 such that f(n)  cg(n) for
all n, n  n0.

• Examples

– f(n) = 3n+2

• 3n + 2 >= 3n, for all n >= 1, 3n + 2 =  (n)

Theta - Q

• The theta notation bounds a functions from above and below,
so it defines exact asymptotic behavior.

• A simple way to get Theta notation of an expression is to drop
low order terms and ignore leading constants.

http://d2o58evtke57tz.cloudfront.net/wp-content/uploads/thetanotation.png

Performance Analysis

• Definition: [Theta]

– f(n) = Q(g(n)) (read as “f of n is theta of g of n”) iff there exist
positive constants c1, c2, and n0 such that c1g(n)  f(n)  c2g(n)
for all n, n  n0.

• Examples

– f(n) = 3n+2

• 3n <= 3n + 2 <= 4n, for all n >= 2,  3n + 2 = Q (n)

Performance Analysis

• *Example :Figure Step count table for recursive summing function

= O(n)

Statement s/e Frequency Total steps

float rsum(float list[], int n)

{

 if (n)

 return rsum(list, n-1)+list[n-1];

 return list[0];

}

0 0 0

0 0 0

1 n+1 n+1

1 n n

1 1 1

0 0 0

Total 2n+2

