
Power System Overvoltages Surge Arresters & Insulation Coordination

G.Sridhar Associate professor, Jyothishmathi Institute of technology and Science

Temporary Over-Voltages

- Typically due to faults
- ≤ 1.2 pu
- ms to tens of second or even minutes
- Not dangerous to insulation
- Decides arrester selection.

Switching Over-Voltages

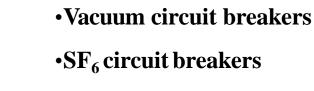
- Due to system switching operations
- 1.5 pu 5 pu depends on system voltage
- mostly damped asymmetric sinusoids
- front time of first peak tens of μs to a few ms.
- decides external insulation in EHV/UHV systems
- decides arrester duty by way of 'long duration class'

Over-Voltages due to Lightning

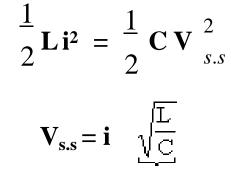
- Due to 'direct' or 'indirect' lightning strokes.
- known to contribute to ≅ 50% of system outages in EHV & UHV systems
- few hundred kV to several tens of MV.
- Few kA to 200 kA
- very short duration : times to front : 1 to few tens of μs
- times to tail : few tens to hundreds of μs.
- Decides line insulation (BIL)
- Severely influences Transformer insulation.

Basics of Switching Surges

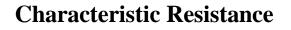
Electrical Elements

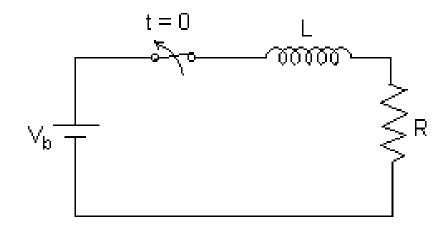

1)
$$\mathbf{L}:=\mathbf{W}_{\mathbf{B}} = \frac{1}{2}\mathbf{L}\mathbf{i}^2 = \frac{1}{2\mu 0}\int_{\text{allspace}} \mathbf{B}^2 \cdot \mathbf{d}\mathbf{v} \qquad \mathbf{V}_{\mathbf{i}} = \mathbf{L} \cdot \frac{\mathbf{d}\mathbf{i}}{\mathbf{d}\mathbf{t}} \rightarrow \infty$$

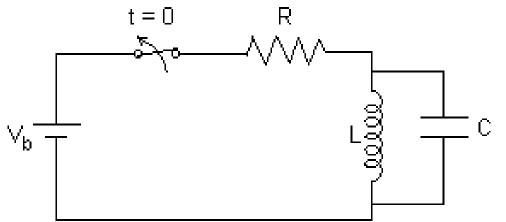
as $(\mathbf{d}\mathbf{t} \rightarrow \mathbf{0})$


2)
$$\mathbf{C} := \mathbf{W}_{\mathbf{E}} = \frac{1}{2} \mathbf{C} \mathbf{V}^2 = \frac{\mathbf{c}_0}{2} \int_{\text{space}} \mathbf{E}^2 \cdot \mathbf{d} \mathbf{V}$$

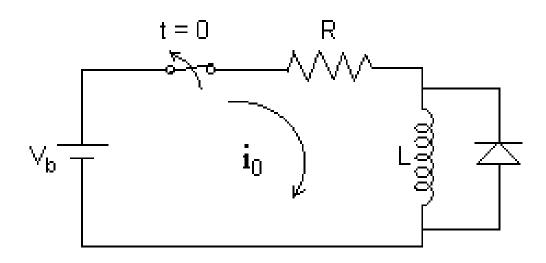
 $\mathbf{Q} = \mathbf{C} \mathbf{V}$
 $\mathbf{i} = \mathbf{C} \cdot \frac{d^2 \mathbf{v}}{dt} \to \infty$
 $\mathbf{as} (\mathbf{dt} \to \mathbf{0})$

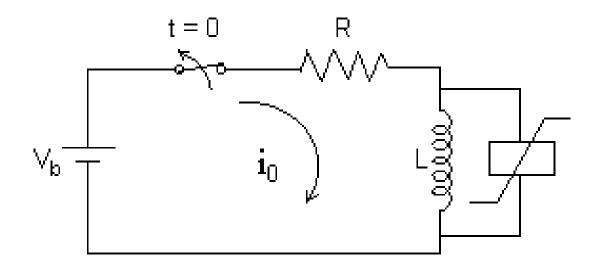

3) R (?) :- dissipative element . Transducer (?)


$$\mathbf{V} = \mathbf{i} \cdot \mathbf{R} \qquad \qquad \mathbf{W} = \mathbf{i}^2 \cdot \mathbf{R}$$


i (t = 0) =
$$\frac{V_b}{R}$$

opening at t = 0
opening transient $\rightarrow V_{s,s} = L \frac{di}{dt}$
 $\rightarrow \infty$
at dt $\rightarrow 0$





Reverse connected diode

Varistor (Non linear resistor)

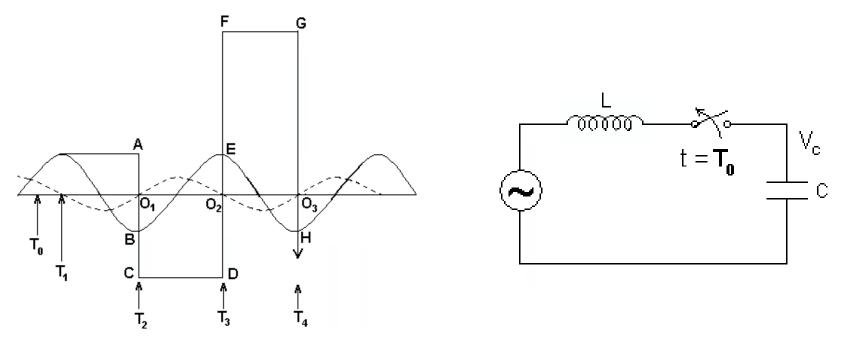


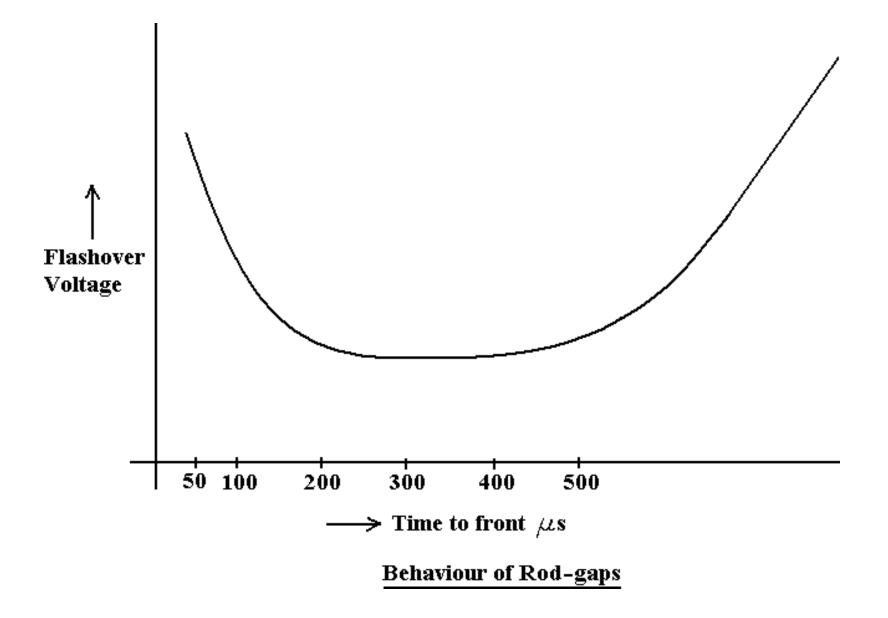
Fig: Switching Over voltages due to breaking inductive-capacitive circuit Circuit breaker opens mechanically at $t = T_0$

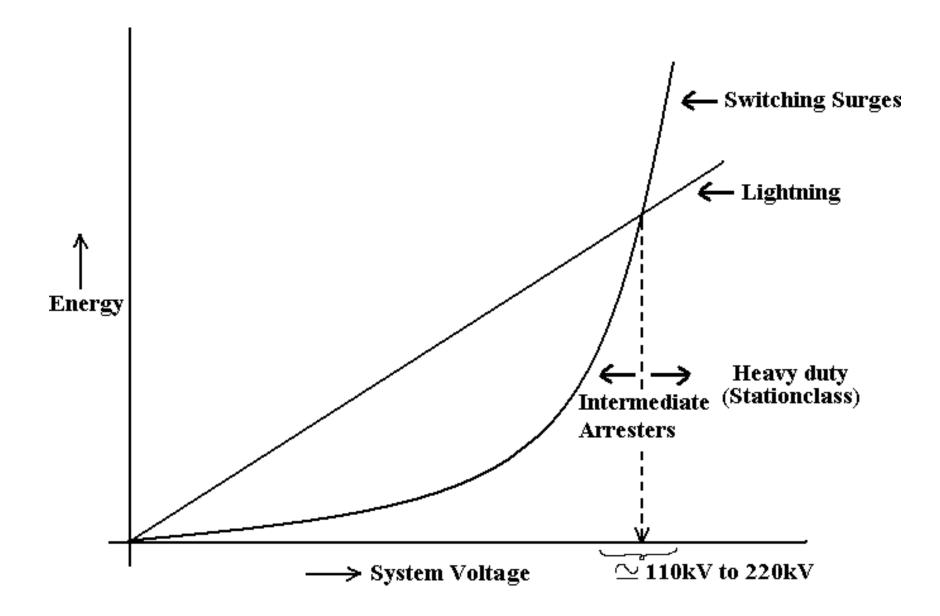
Circuit breaker opens electrically at $t=T_1$

- At $t = T_0$, $V_c = O_1 A = V_p$ (peak voltage of system) = 1 pu
- At t=T₂, voltage across circuit breaker (V_{CB}) = 2 V_p (from A to B)
- At t=T₂ CB restrike

 V_c lends to B but due to energy in L it overshoots to C such that AB = BCOver voltage due to this = $3V_p$ (O_1 to C)

Importance of Switching Surges

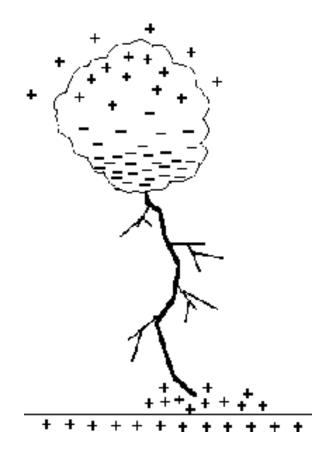

1. Can cause flashover/outage of exposed insulation. Clearances required :

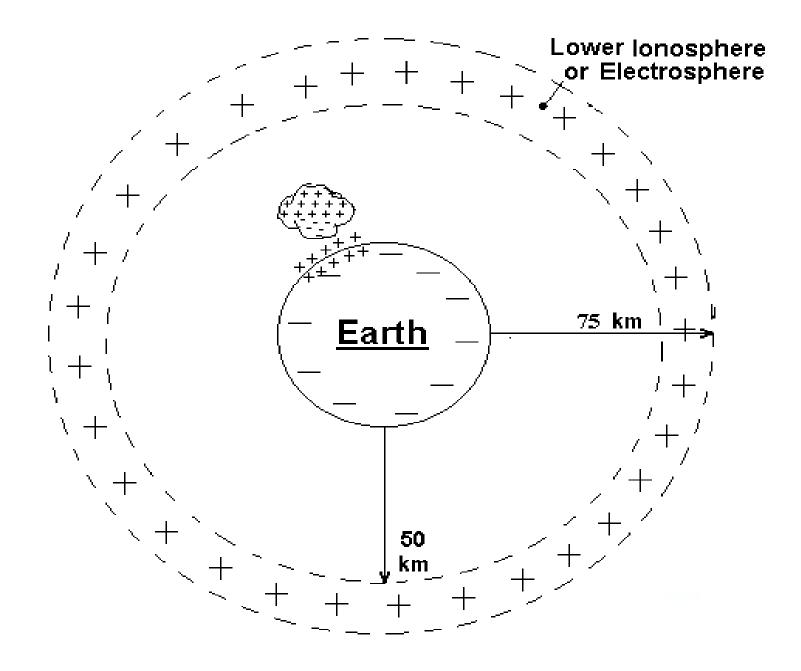

$$\begin{split} L_g &= \text{Gap distance in m,} \\ V &= \text{Switching overvoltage in MV} \\ L_g &= 4.V \text{ m for } V \leq 1 \text{ MV} \\ L_g &= 4.V^2 \text{ m for } V > 1 \text{ MV} \end{split}$$

Energy (W_{SS}) in Switching overvoltage is enormous.

 $W_{SS} = \frac{1}{2} C_{SS} \cdot (V_{SS})^2$

- C_{SS} = Capacitance involved in generation of switching surges.
- $C_{SS} \alpha$ Length of Line α System voltage
- $V_{SS} \alpha$ System voltage
- \therefore W_{SS} α (System Voltage)³

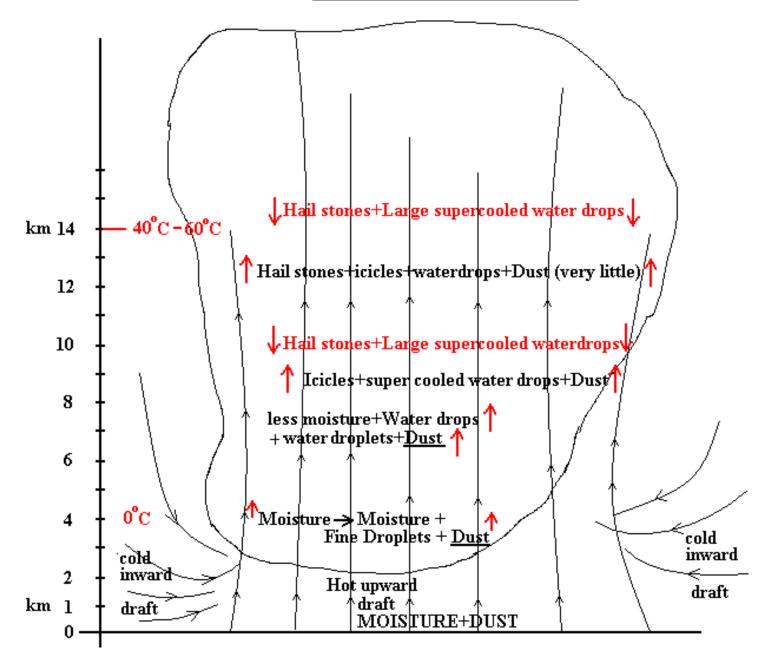



Basics of Lightning

LIGHTNING

Lightning

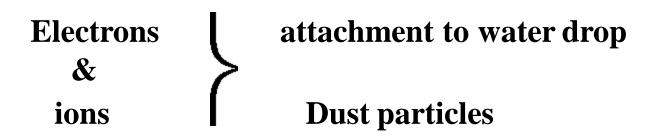
- Frequent, spectacular, natural phenomena
- Has considerable destructive potential
- Electrical discharge from a charged cloud (thundercloud) to another cloud or to ground
- Discharges within a cloud also occur



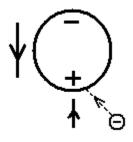
Global Capacitor

- Lower Ionosphere : + 300 kV near constant voltage with respect to Earth
- Earth : Negative Electrode.
- Average leakage current from earth \simeq 3 x 10⁻¹² A/m²
- Average charge density on earth's surface ~ 1.1 x 10⁻⁹ C/m²
- Total leakage current <u>~</u> 2000A to 3000A from Lower Ionosphere to earth.
- Normal electric field at earth's surface ~ 3V/cm
- Electric field on the earth's surface under approaching stepped leader ~ 500 V/cm to 600 V/cm
- Effective leakage resistance of atmosphere $\geq 100\Omega$ to 150Ω
- Average equivalent current per stroke = 2A
- Number of 'average current level' lightning ~ 1000 to 1500 strokes per second
- Estimated total number of lightning strokes per <u>~</u> 3000 to 5000 per second (global)

Formation of Thundercloud



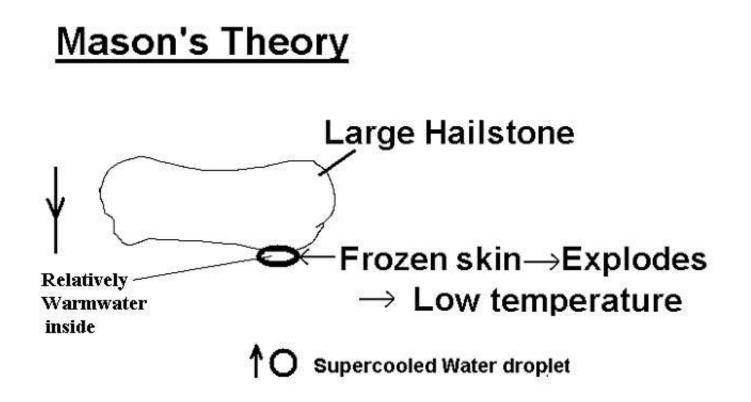
Mechanisms of Charge Generation


- 1. Simpson's Theory
- 2. Wilson's Theory
- 3. Mason's Theory

<u>Tribo Electricity</u> - **<u>Friction</u>** → Charge seperation

Solar Radiation \rightarrow 7 to 10 electron – ion pairs per cm³.

Positive charge on Lower Ionosphere



attracted – neutralisation of positive charge

electron/negative ion /negatively charged dust particle or fine droplet

- ve charge on earth

Simpson's Mechanism

Lower temperature → excess + ve charges Higher temperature → excess - ve charges

Lightning Stroke

- * Stepped Leader develops in steps (a few m to tens of m) towards earth. (Multiple branches at nodes).
- * When stepped leader comes sufficiently close to earth (or earthed object – tower, tall tree, water tank etc;) positive streamers start from earthed object.
- * Stepped leader meets positive streamer typically 10m to 200m above earth completion of <u>Forward stroke.</u>

Forward stroke - 1 kA to 2 - 3 kA

- Very slow
- Not visible

<u>Return stroke (First</u>)

- Huge current develops in conducting channel of Forward stroke (invisible)
- Extremely rapid development
- Minimum \simeq 5 kA
- Maximum $\simeq 200 \text{ kA}$
- Rise time $\simeq 5\mu s 15\mu s$
- Channel core temperature <u>~</u> 30000⁰ C
- Velocity \simeq (0.5 . velocity of light)
- Extremely Bright
- Thunder (Acoustic effect of channel heating extremely rapidly).

* Dart Leader

* Second return stroke, etc;

Lightning Flash

Minimum – one stroke

Average – 3 to 5 strokes

Maximum – upto 40 strokes.

Current magnitude – reduces progressively.

Some Basic Characteristics

first

- Cloud potentials very small to $\approx 100 \text{ MV}$
- Charge in a cloud very small to > 300C
- Lightning <u>Flash</u> Has many strokes upto 40
 - Typically 4 to 5 strokes/Flash
 - Peak current reduces from that of stroke
- Currents in Lightning discharges to ground

- Upto ≈ 200kA (negative)

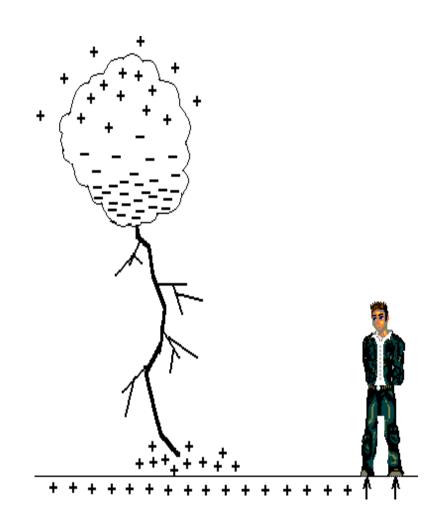
- Upto ≈ 360kA (positive)

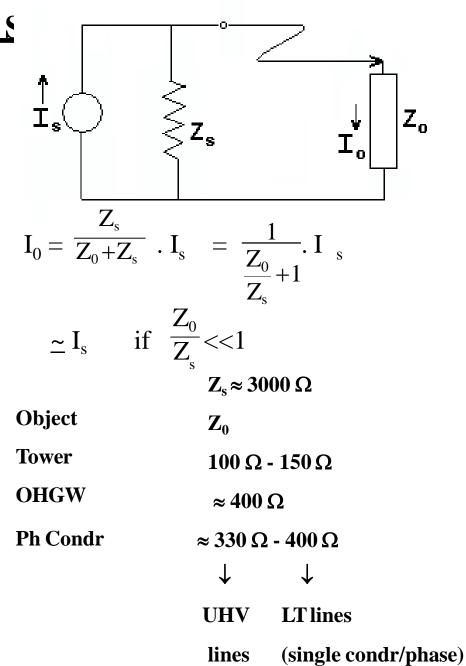
- Rate of rise Max.:10¹¹A/s (100kA/µs)
- More than 70% of strokes Negative
- Number of strokes/second 2000 to 5000

All over the world

Probable Lightning Flash Density =

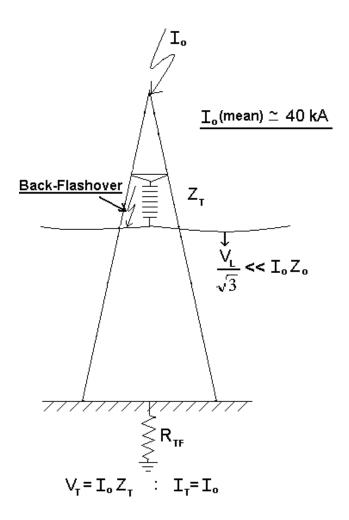
 $N_E = (0.1 + 0.35 \text{ Sin}\lambda) (0.4 \pm 0.20)$

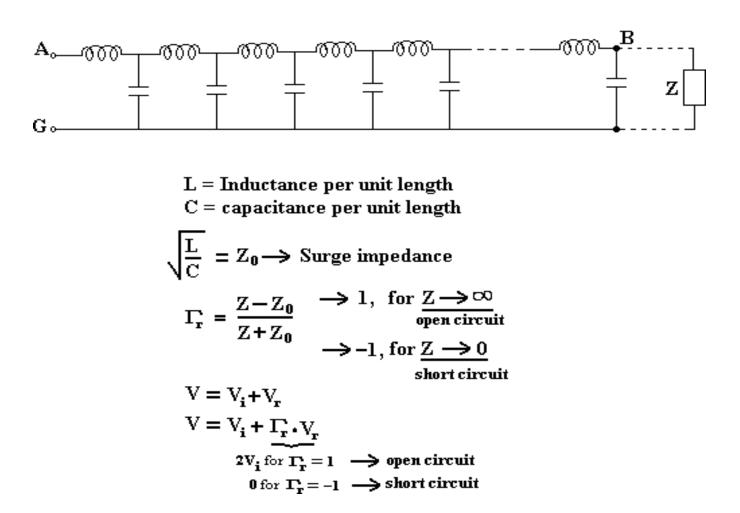

 λ = Latitude.


No. of strokes/km²/Thunderstorm day

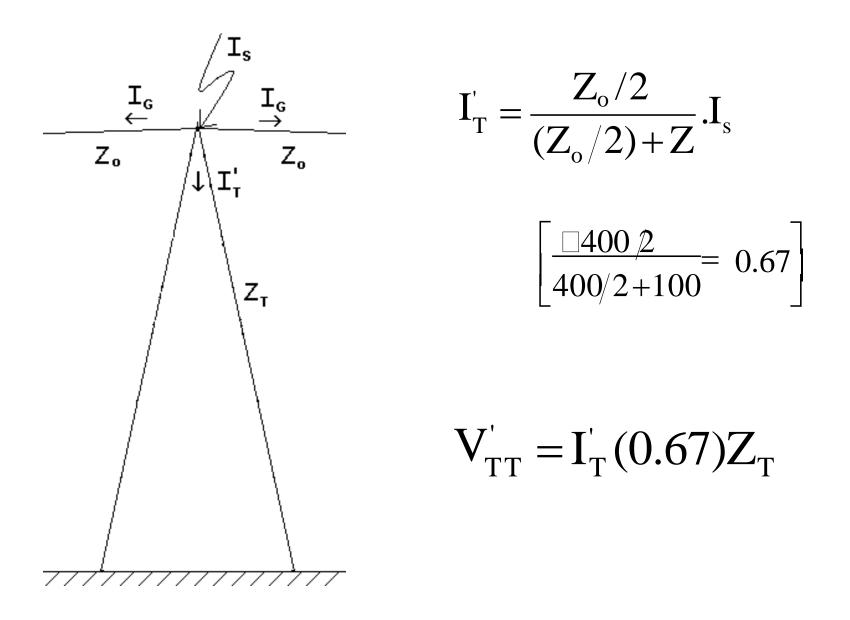
 $N_G = 0.04 (T_d)^{1.25}$

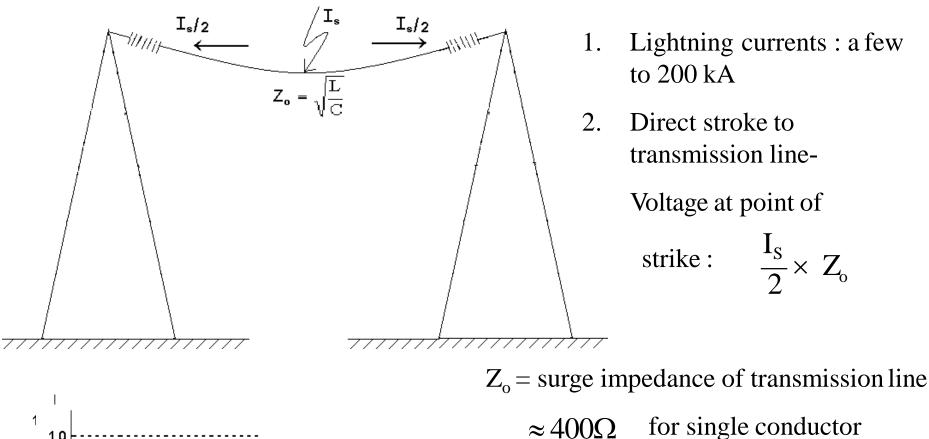
Lightning Overvoltage Magnitudes

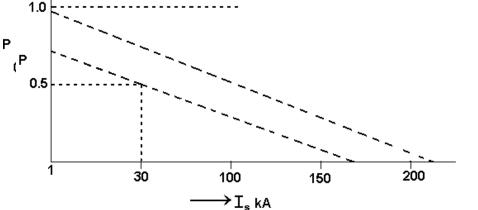

Equivalent Circuit for Lightning §



Lightning Over Voltages


1. Strokes to tower – without OHG Wire


Travelling Waves



Reduction of Tower Top potential by Overhead Ground Wire

Over Voltages & Currents due to Lightning

 $\approx 350\Omega$ for twin & multiconductor

bundles

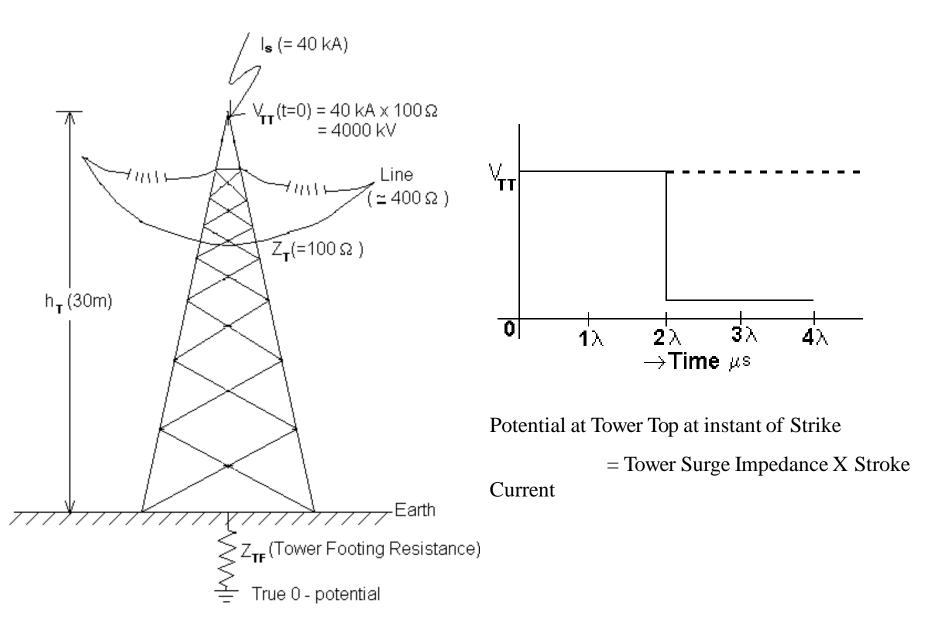
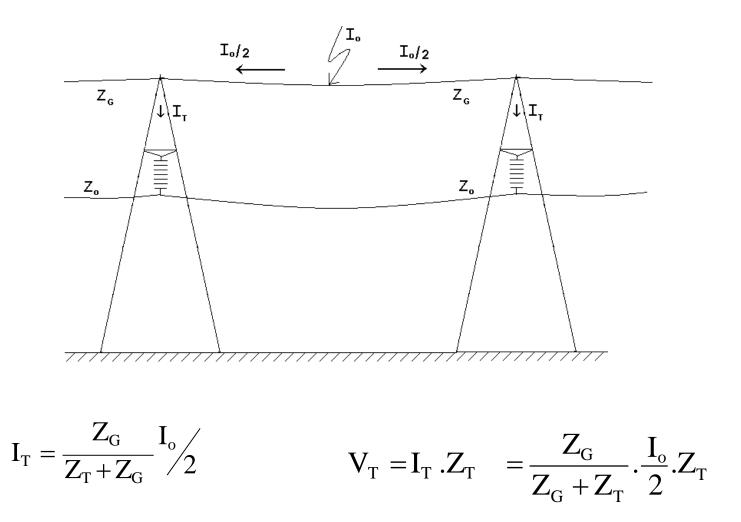
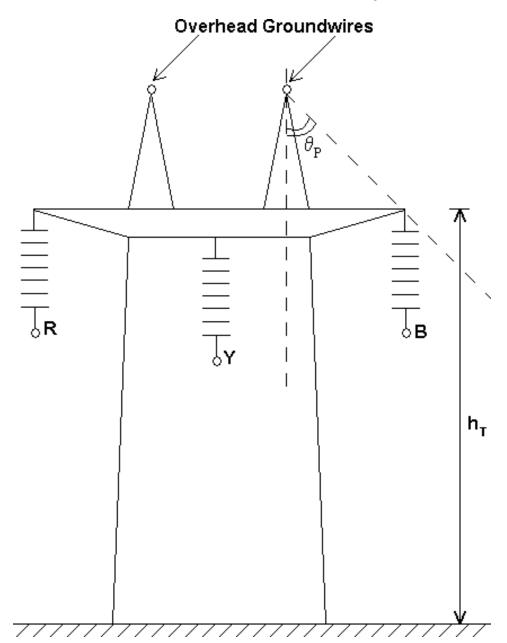
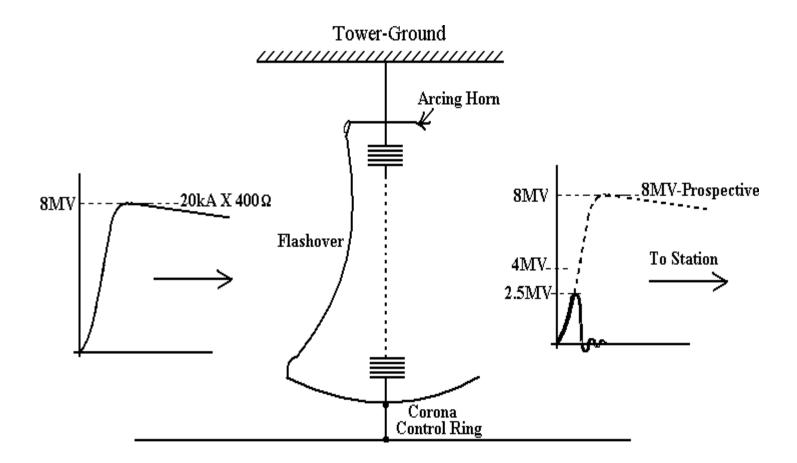
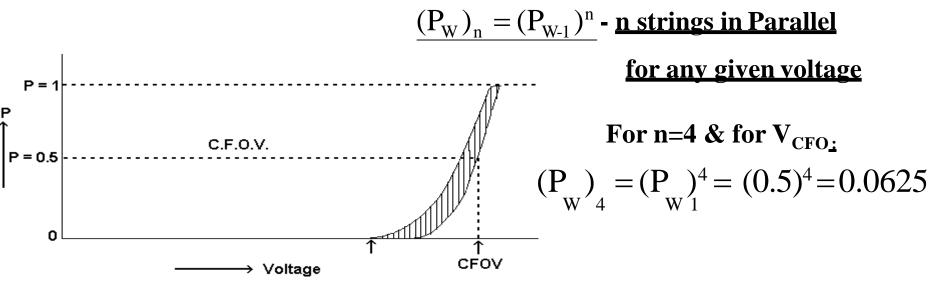




Fig : <u>Stroke to Tower Top</u>

Strokes to OH GW - midspan



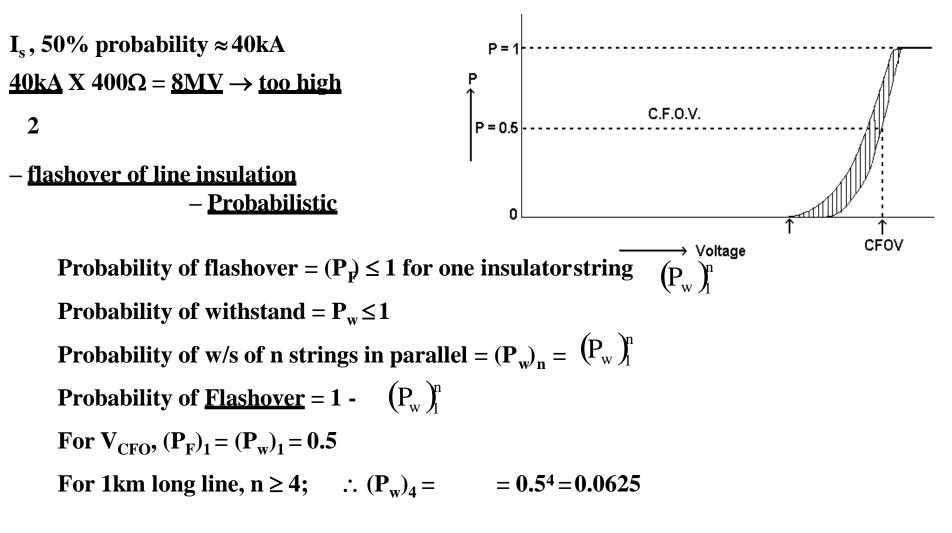

Protection by Overhead Ground Wires

 $\theta_{\rm P} \le 30^{\circ}$ for $h_{\rm T} < 30$ m $\theta_{\rm P} \approx 20^{\circ}$ for $h_{\rm T} \ge 30$

Electro-geometric model - white head – for $h_T \ge 30$

Probability of flashover = <u>0.9375</u>

Therefore maximum voltage entering station $\approx V_{CFOV}$


Too high to be taken as Design level for Transformer Insulation

Hence compulsive need for over voltage Protection of

<u>Power-Transformers</u> ← <u>most critical & expensive</u> <u>equipment</u>

Lightning Overvoltages at Arrester Terminal

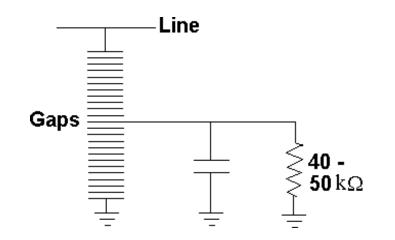
Statistical behaviour of breakdown (of Line insulation)

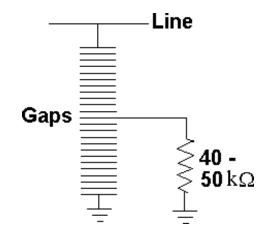
Thus, typically, max voltage inside a station protected by OHGL for atleast 1 $km = V_{CFO}$

Surge Arresters

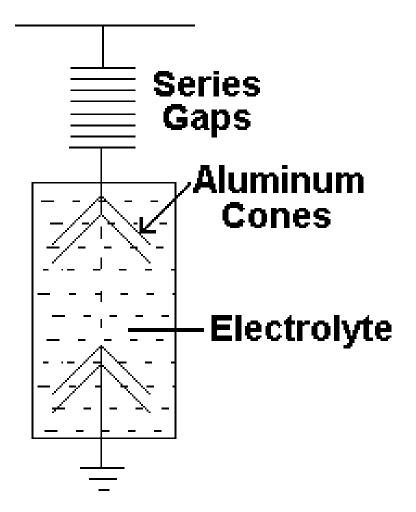
Brief History of Development of Lightning Arresters (Surge Diverters) - <u>Surge Arresters</u>

Various types of Gaps

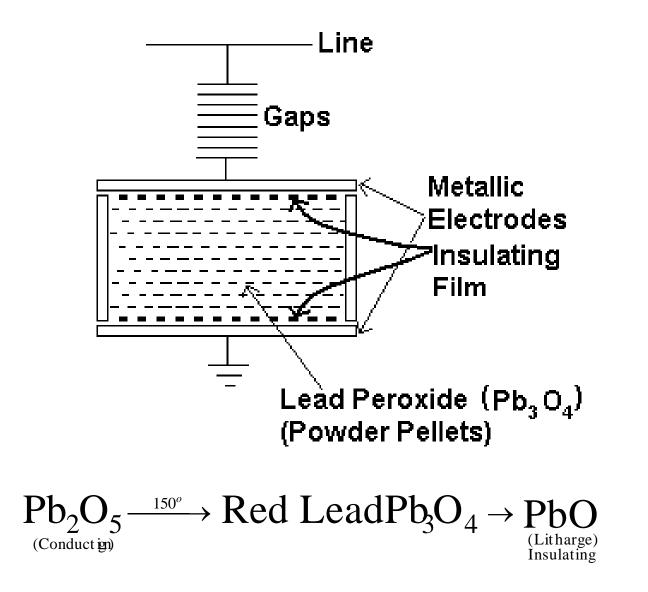

1880 A.D.: a)'Horn Gap'

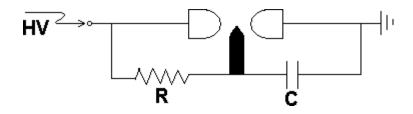

Rarely used : Waterjets to leak charges on Transmission Lines.

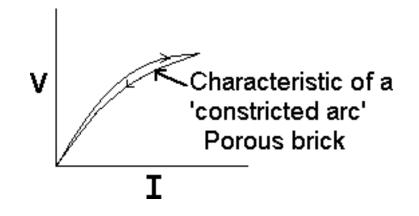
b)'Modified Gaps'


Discriminating Lightning Arrester

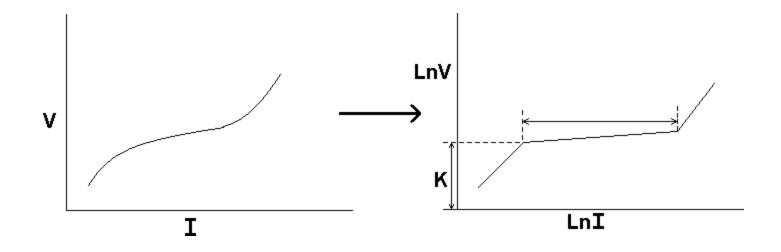
Low Equivalent Lightning Arrester



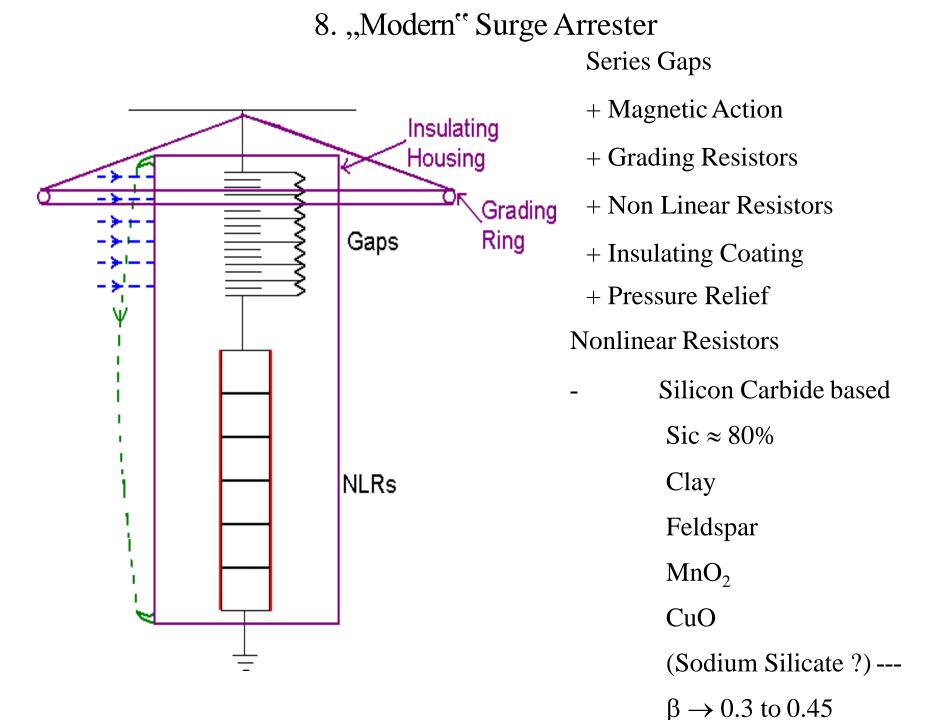

3. 'Aluminum Cell' LA


4. Oxide – Film Arrester → Pellet Arrester Crosby Field & Christopher Lougee

5. Impulse Gaps – Chester Allcut

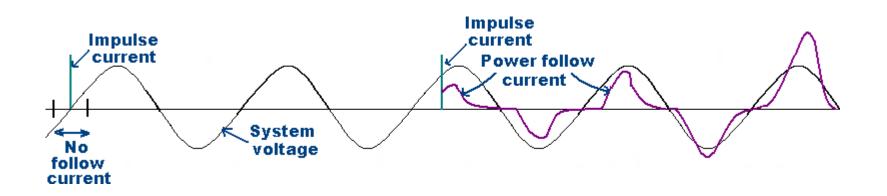


6. 'Auto Valve Arrester' – Westinghouse Stephen etal

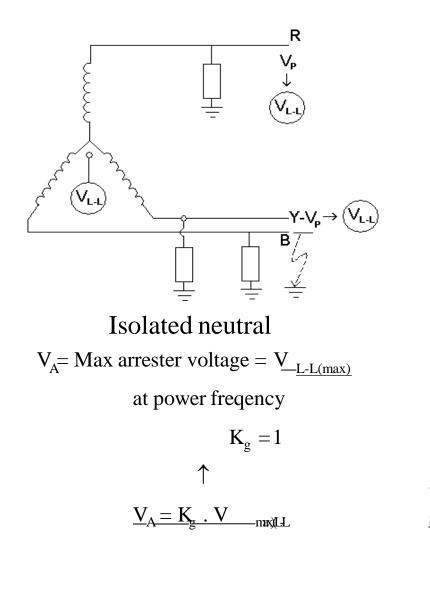


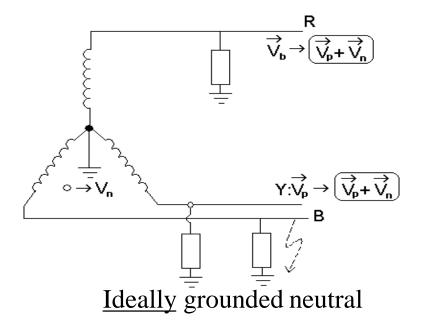
7. 'Thyrite' – McEachron – General Electric (1932)

 $V = K I^{\beta}$ $\beta \approx 0.3$ to 0.4



 $LnV = LnK + \beta LnI$


Surge Arrester Series Gaps Non Linear Resistors


- 1. Should be insulating under <u>healthy voltage conditions</u>
- 2. Should sparkover whenever a dangerous overvoltage arises.
- 3. Should quench power follow current at the earliest
- 1. The voltage developed during flow of impulse currents should be below withstand capability of insulation under protection.
- 2. Should limit the power follow current to a value that can be safely interrupted by series gaps.

Power Frequency Voltage Rating of Arresters

The max voltage across arrester/s on the healthy phases under fault-conditions (single line-ground fault is almost invariably the worst) should not cause operation of arresters.

 $V_n \rightarrow$ remains at 0 even when fault current flows

$$V_A = V_{P(max)}$$
 $Kg = 1/\sqrt{3} \approx 0.6$

Solidly grounded(Effectively grounded system)

 $V_A = \underline{0.8} V_{L-L(max)} \rightarrow \underline{Nearest higher standard rating}$ <u>slected</u>

80% arrester

Lightning Currents through Arresters

 $V_{CFO} \rightarrow$ on impact on a Transformer winding (open circuit), doubles at the most $\rightarrow 2 V_{CFO}$

Assume SA sparks over at 2 V_{CFO} , current through S.A. = I_{S}

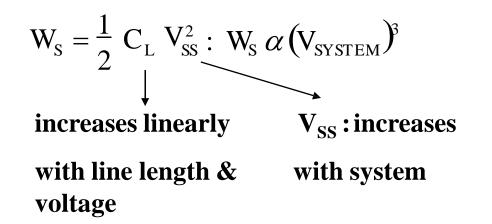
$$_{\rm A} = \frac{2 \, \mathrm{V}_{\rm CFO}}{\mathrm{Z}_0 + \mathrm{Z}_{\rm A}} \downarrow$$

negligible

Ex.: 220kV line: BIL = 1050 Kv

$$I_{SA} = \frac{2V_{CFO}}{Z_0} = \frac{2X1500kV}{400\Omega} = 7.5kA$$

Not possible to have SAs of many ratings


System Voltage	Impulse Current rating		
500 V (LT)	1.5 kA	LT arresters	
	2.5 kA		
3.3 kV - 33 kV	5 kA	Distribution class	
(Distribution)		arresters	
$> 33 \mathrm{kV} \leq 132 \mathrm{kV}$	10 kA	Intermediate	
		Station class	
220 kV	10 KA	Heavy duty Station	
		c1ass	
≥400 kV	10 kA	Heavy duty Station	
	20 kA	class	

High current ratings (4 X 10µs)

- 10 times Impulse Current rating for 1.5kA, 2.5kA & 10kA class
- 13 times Impulse Current rating for 5kA class(!)

Switching Surge Energy Handling Capability

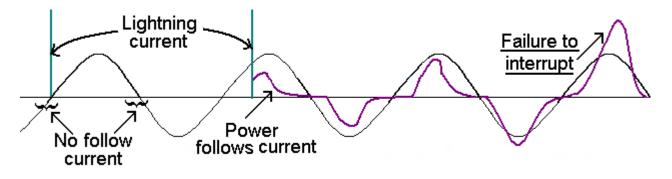
Energy stored in a line of capacitance C_L at a switching surge voltage of V_{SS} is

hence system voltage upto & including 132 kV : Lightning surges are more important

At & above 220kV, W_s becomes very important

- decides long duration class of arresters

Energy capability per kV rating of arrester kJ/kV


Estimation of Power Follow Currents

Distribution	class, 3kV/rms ,	Station class,	3kV/rms,	
	$K \rightarrow 1200 \text{ to } 1500$	K→ 600 to 900		
currents	$\beta \rightarrow 0.43$ at low currents	5	$\beta \rightarrow 0.43$ at low currents	
	< 0.3 at high		(≈ 1 A)	
			\rightarrow 0.25 at high currents	
	(>10A)		(>100A)	
	$V = K.I^{\beta} \rightarrow I = 1A \rightarrow V = K = voltage required to derive 1A$			

Distribution class		Station class	
K = 1200, $\beta = 0.3$, $2^{1/\beta} \approx 10$		$K = 600, \ \beta = 0.2, \ 2^{1/\beta} \approx 16$	
V	I	V	I
V=K=1200 V	1 A	V=K=600 V	1 A
2400 V	10 A	1200 V	16 A
$3000\sqrt{2} = 4200 \text{ V} \rightarrow 66 \text{ A I}_{\text{PF}}$		2400 V	256 A
4800 V	100 A	$3000\sqrt{2} = 4200 \text{ V} \rightarrow \text{A I}_{\text{PF}}$	
9600 V	1000 A	4800 V	4096 A
$RDV \rightarrow 15000 V \rightarrow 5000 A (I_L)$		$RDV \rightarrow 6000 V \rightarrow 10000 A (I_L)$	
19200 V	10000 A	9600 V	65536 A
38400 V	100000 A	19200 V	*
		38400 V	*

<u>Series Gaps</u>

- 1. For temporary overvoltages, Gaps should not sparkover. Therefore, the sparkover voltage of the gaps under power frequency voltage should be more than about 1.2pu.
- 2. After passage of lightning currents, the power system drives a current power follow current = which must be safely interrupted.

3. By experience, it is found that the follow current gets quenched if the <u>power</u> frequency sparkover voltage is greater than or at least equal to (1.5 X Voltage rating) of the arrester.

 $V_{A}\!=k_{g}$. $V_{L\text{-}L\text{-}max}$ (k_{g}\!=30\% for effectively grounded systems) 50Hz 5.0V \geq 1.5 V_{A}

- a) For distribution class, 2 to $3 V_A$
- b) For H.V. arresters 1.5 to 1.8 V_A

Types of Gaps

 $I_F < 100A(peak)$

- \rightarrow Plane-Parallel Gaps
 - "Quench Gaps"

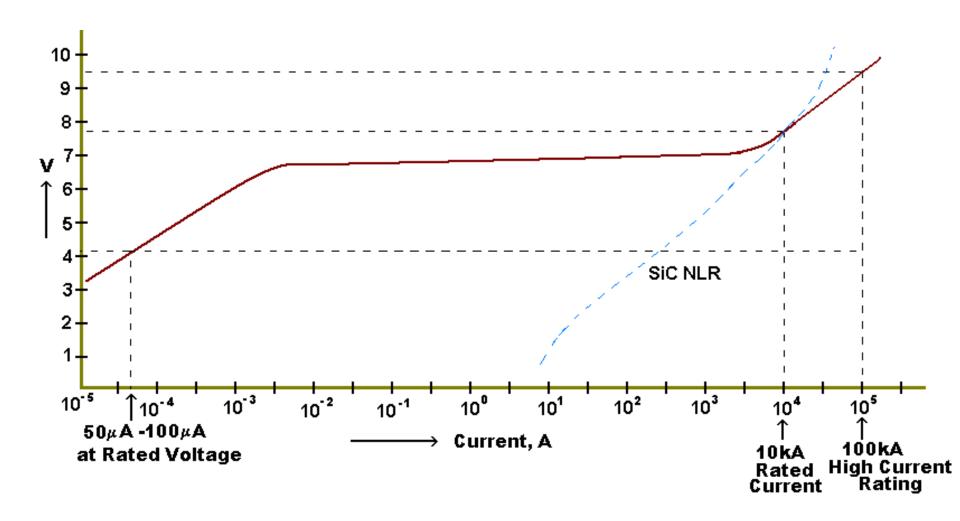
 $I_F \!\geq \! 100A \!\leq \! 300A$

 \rightarrow ,,Rotating Arc''

 $I_F \ge 300A \le 500A - Light duty magnetic blow out$

 $I_F > 500A \rightarrow$ Heavy duty magnetic blow

9. 'Most Modern' Surge Arrester


 $n = 1/\beta \rightarrow 4$ to

Metallic Oxides – ZnO $\approx 85\%$ to 90%

 $\begin{array}{c} Sb_{2}O_{3} \\ Bi_{2}O_{3} \\ CO_{2}O_{3} \\ Zr_{2}O_{3} \\ Al_{2}O_{3} + \dots \end{array} \right\} \text{ balance } \begin{array}{c} V = KI^{\beta} \\ SiC NLRs \dots \beta \approx 0.25 \text{ to } 0.4 \\ n = 1 \\ 0.25 \\ MOV NLRs \dots \beta \approx 1/40 - 1/50 \end{array}$

Zinc-Oxide (Metal Oxide) Gapless

Surge Arresters

Advantages of MOV

Max Cont Operating Voltage – MCOV (current - 50-100µA) Reference Voltage (current - 10 to 20 mA) Residual Voltage (current – 10kA)

- 1.Absence of Gaps Continuous protective actionTemp 50Hz Overvoltage Vs Permissible time
- 2. Steep Current : 1µs front Time
- 3. Significantly higher thermal capacity: upto 800 J/cm³ \rightarrow 23kJ/kV

reaches melting point of Bi₂O₃

- 4. Ageing Arrehenius Law
- 5. Parallel operation possible with nominal effort
- 6. **Response time 50ns**

- can act for very steep impulses

(GIS transients & Vac-C.B transients)

Other advantages of MOV Arresters

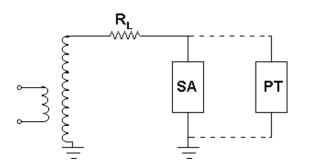
- 1. Very high energy handling capability
- 2. High yield with <u>Excellent Consistency</u> of characteristics permitting parallel operation
- 3. Absence of Gaps "Continuous" protective action

– Instantaneous action (< 40 to 50 ns)

Life – Arrehius Law

$$R = R_o \cdot e^{\frac{\phi_B}{KT}}$$
 = Rate of reaction

 $\phi_{\rm B} = \text{Barrier height}$


- K = Boltzmann Constant
- T = Temperature, °K
- $R_0 = Constant$

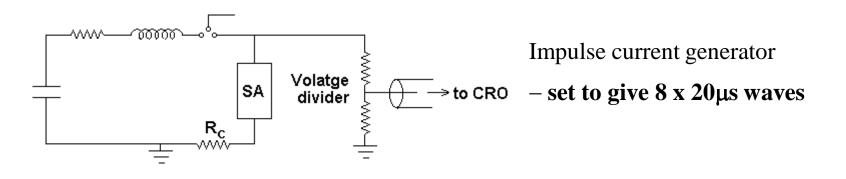
Tests on

Surge Arresters

Tests

1) Power frequency 50 V test – <u>Routine Test</u>

50 Hz 5.0 V \ge 1.5 V_A


 R_L should limit the current to 1A (rms) at rated voltage

2) Impulse 50V test : 1.2/50µs std wave

Apply specified voltage : 10 + and 10 – pulses at 30s intervals

Should sparkover on each apply showing that it protects without fail

3) Residual voltage test: <u>Measured Residual Voltage must be</u> \leq <u>specified limit</u>

4) High Current Test: use impulse current generator

– set to give 4 x 10µs waves

- (a) Discs should not show signs of distress
- (b) 50% SOV should not have changed by more than ±
 10% showing it can survive without prejudice to
 protection
- 5) Long duration test severity depends on duty class

6) Operating Duty Test

Impulses superimposed at 30° (from zero)
 on 50 Hz → (5 pulses x 4 groups) =20 applications
 Residual voltage & 50Hz SOV should not change more than ±10%

Life of Surge Arresters Gapped Arresters

- a) Operating duty test → <u>20 applications</u> of rated impulse current superposed.
 - b) Long duration test \rightarrow <u>20 applications</u>
 - c) Variation in SOV & Residual voltage : $\leq 10\%$
- 2. Gapless arresters \rightarrow More Complex but similar
- 3. Life \rightarrow 20 <u>full blooded</u> operations ?

Extremely rare

- 4. In real life, \rightarrow Failure almost always due to <u>ingress of</u> <u>moisture</u>
 - a) Condensation on electrodes of gap
 - b) Condensation on surface of Non linear resistors.

Condition Monitoring & Residual Life

1. Condition of Gaps :

Sparkover voltage of Full Arrester –

- a) 50 Hz testing transformer
- b) Impulse more appropriate but more difficult (Impulse Voltage Generator)
- 2. Condition of Non Linear Resistors → <u>Residual voltage level</u>
 - a) Gapped arresters \rightarrow Not practical
 - b) Gapped arresters → possible but in Laboratories with Impulse Voltage Generator of reasonable energy rating.

3. Surge counter – appropriately calibrated

4. Leakage current

- Gapped arresters current through Grading resistor
- Gapless arresters Total current $(I_C + I_R)$?

- $I_R \text{ only} \rightarrow \underline{\text{best}}$

Principles of

Insulation Coordination

Insulation Coordination

Coordination between:

- Characteristics of <u>line insulation</u> Feature : V_{CFO} → decided from point of view of <u>acceptably low outrage rate</u>
 - <u>Transformer Insulation</u> level against transients (Transient insulation level –TIL)
 - Decided based on surge arrester characteristics and suitable factor of safety
 - Max voltage across surge arrester under any condition

1. Surge Arrester $V_A = k_g \cdot V_{s(max)}$

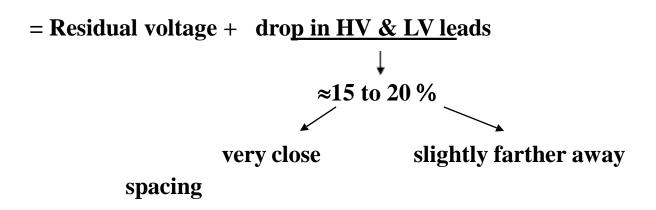
- 100% Impulse Sparkover Voltage (in case of gapped arresters)
- Residual voltage at rated current
- Steep fronted current residual voltage (in case of gaplers arresters)
 - Front of wave sparkover voltage (in case of gapped arresters)
 - -<u>Let maximum of above</u> = V_{a-m}

(arrester – maximum voltage)

- (maximum assured & tested value)

2. Factor of safety on V_{a-m} - K_s

To consider reduction in voltage withstand-level of transformer insulation level due to-ageing $\approx 15\%$ minimum


$$K_{s-min} = 1.3$$

To consider additional voltage due to voltage-drop in leads $\approx 15\%$

3. Line-Insulation

- V_{CFO} of line insulation > $1.3 V_{a-max}$
- $V_{CFO} \rightarrow$ should be high enough to keep line voltage to acceptable levels. Otherwise
- too many outrages
- electrical & mechanical stresses on power transformer due to too many faults.
- If V_{CFO} too high outrages reduce but higher voltages appear across arresters, higher arrester currents, higher residual voltage, higher insulation level.
- \rightarrow choose TIL as nearest higher level-compared to 1.3 V_{a-max} – from table of TILs

Max voltage (during flow of impulse currents) across apparatus protected

Insulation w/s level = <u>Factor of safety</u> × Max Impulse voltage across apparatus W/s level of new insulation > W/s level of aged insulation

Factor of safety should include : possible rare overvoltage events & ageing insulation Typically: ≈ 1.3 at UHV & EHV level

 ≈ 2 at distribution level

This gives upper limit for <u>Residual voltage of NLRs</u> (at rated current) as well as <u>Impulse sparkover voltage of gaps</u>

<u>Example</u>

- 400 kV nominal system voltage
- 420 kV max system voltage V_{s-m}
- Arrester power frequency voltage rating = $k_g \cdot V_{s-m} = V_A$ Estimated value of grounding coefficient : 0.70 Use $k_g = 0.70 + 0.05$

safety factor to consider unusual conditions

 $V_A = 420 \ge 0.75 = 315 \text{ kV} \text{ (rms)}$ (If this is not a standard rating, choose <u>nearest higher rating</u>)

Impulse current rating : <u>20kA</u>

• From technical bids for arresters:

Gapped arresters:

Assured max Imp 50V: 720 kV (p)

Assured max residual voltage : 860 kV (p)

Gaplers arresters:

Assured max residual voltage : 750 kV (p) Choose: gaplers arresters : $V_{a-m} = 750$ kV (p) Transformer Insulation level-minimum = <u>1.3</u> x 750 = 975 kV (< <u>1050 kV BIL of 220 kV</u>!) \rightarrow <u>1.5 x 750 = 1125 kV</u> (BIL = 1550 kV for 400 kV system)

THANK YOU