
JYOTHISHMATHI INSTITUTE OF TECHNOLOGY AND SCIENCE

K.MAHESH RAJ

ASST. PROFESSOR,CSE

OPERATING SYSTEM

PAGE REPLACEMENT

ALGORITHMS

WHAT HAPPENS IF THERE IS NO FREE FRAME?

 Used up by process pages

 Also in demand from the kernel, I/O buffers, etc

 How much to allocate to each?

 Page replacement – find some page in memory, but not
really in use, page it out
 Algorithm – terminate? swap out? replace the page?

 Performance – want an algorithm which will result in
minimum number of page faults

 Same page may be brought into memory several times

PAGE REPLACEMENT

 Prevent over-allocation of memory by modifying
page-fault service routine to include page
replacement

 Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk

 Page replacement completes separation between
logical memory and physical memory – large virtual
memory can be provided on a smaller physical
memory

NEED FOR PAGE REPLACEMENT

BASIC PAGE REPLACEMENT

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to

select a victim frame
- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page
and frame tables

4. Continue the process by restarting the instruction that caused the
trap

Note now potentially 2 page transfers for page fault – increasing EAT

PAGE REPLACEMENT

PAGE AND FRAME REPLACEMENT ALGORITHMS

 Frame-allocation algorithm determines
 How many frames to give each process

 Which frames to replace

 Page-replacement algorithm
 Want lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page
faults on that string
 String is just page numbers, not full addresses

 Repeated access to the same page does not cause a page fault

 In all our examples, the reference string is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

GRAPH OF PAGE FAULTS VERSUS

THE NUMBER OF FRAMES

FIRST-IN-FIRST-OUT (FIFO) ALGORITHM

 Reference string:
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

 3 frames (3 pages can be in memory at a time per
process)

 Can vary by reference string: consider
1,2,3,4,1,2,5,1,2,3,4,5
 Adding more frames can cause more page faults!

 Belady’s Anomaly

 How to track ages of pages?
 Just use a FIFO queue

7

0

1

1

2

3

2

3

0

4 0 7

2 1 0

3 2 1

15 page faults

FIFO PAGE REPLACEMENT

FIFO ILLUSTRATING BELADY’S ANOMALY

OPTIMAL ALGORITHM

 Replace page that will not be used for longest period

of time

 9 is optimal for the example on the next slide

 How do you know this?

 Can’t read the future

 Used for measuring how well your algorithm performs

OPTIMAL PAGE REPLACEMENT

LEAST RECENTLY USED (LRU) ALGORITHM

 Use past knowledge rather than future

 Replace page that has not been used in the most amount of time

 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT

 Generally good algorithm and frequently used

 But how to implement?

LRU ALGORITHM (CONT.)
 Counter implementation

 Every page entry has a counter; every time page is referenced through this
entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to find smallest
value
 Search through table needed

 Stack implementation
 Keep a stack of page numbers in a double link form:

 Page referenced:
 move it to the top

 requires 6 pointers to be changed

 But each update more expensive

 No search for replacement

 LRU and OPT are cases of stack algorithms that don’t have Belady’s
Anomaly

USE OF A STACK TO RECORD THE

MOST RECENT PAGE REFERENCES

LRU APPROXIMATION ALGORITHMS

 LRU needs special hardware and still slow

 Reference bit
 With each page associate a bit, initially = 0

 When page is referenced bit set to 1

 Replace any with reference bit = 0 (if one exists)
 We do not know the order, however

 Second-chance algorithm
 Generally FIFO, plus hardware-provided reference bit

 Clock replacement

 If page to be replaced has
 Reference bit = 0 -> replace it

 reference bit = 1 then:
 set reference bit 0, leave page in memory

 replace next page, subject to same rules

SECOND-CHANCE (CLOCK) PAGE-REPLACEMENT ALGORITHM

COUNTING ALGORITHMS

 Keep a counter of the number of references
that have been made to each page
 Not common

 LFU Algorithm: replaces page with smallest
count

 MFU Algorithm: based on the argument that
the page with the smallest count was probably
just brought in and has yet to be used

PAGE-BUFFERING ALGORITHMS

 Keep a pool of free frames, always
 Then frame available when needed, not found at fault time

 Read page into free frame and select victim to evict and add to free pool

 When convenient, evict victim

 Possibly, keep list of modified pages
 When backing store otherwise idle, write pages there and set to non-dirty

 Possibly, keep free frame contents intact and note what is in them
 If referenced again before reused, no need to load contents again from disk

 Generally useful to reduce penalty if wrong victim frame selected

APPLICATIONS AND PAGE REPLACEMENT

 All of these algorithms have OS guessing about future
page access

 Some applications have better knowledge – i.e. databases

 Memory intensive applications can cause double buffering
 OS keeps copy of page in memory as I/O buffer

 Application keeps page in memory for its own work

 Operating system can given direct access to the disk,
getting out of the way of the applications
 Raw disk mode

 Bypasses buffering, locking, etc

