

## JYOTHISHMATHI INSTITUTE OF TECHNOLOGY AND SCIENCE

# Power System Operation and Control: Economic Dispatch

P.BALAKISHAN

ASSOC.PROF.

JITS, KARMNAGAR.

- Long term system planning: <u>Production cost</u>
  - Decide what to build
- Hourly to monthly decisions: <u>Unit commitment</u>
  - Decide which plants to have warmed up and ready to go
  - Different technologies have different requirements
- Minutes to Hour: <u>Economic dispatch</u>
  - Decide which plants to use to meet the expected load now
  - 5 minutes to 1 hour
- Cycles to Minutes: Short term system operations and <u>Load Flow Model</u>
  - Maintain supply and demand balance moment to moment
  - ~17msec per cycle up to 5 minute control functions

## What is "Economic Dispatch?"

- Economic dispatch (ED) determines the least cost dispatch of generation for a system.
  - To dispatch ≡ To order to generate (more) energy
- Economic Dispatch (from EPACT 1992)
  - The operation of generation facilities to produce energy at the lowest cost to reliably serve consumers, recognizing any operational limits of generation and transmission facilities.

## **Economic Dispatch Formulation**

- Focusing on our objective
  - How do we represent our objective mathematically?

– What mathematical tool do we use to obtain this objective?

 What does solving our (to be developed) set of equations help us to decide?

## **Economic Dispatch Formulation**

- Therefore we need to understand
  - How to represent system generating costs mathematically
    - Costs of operating (dispatching) generators
    - Indirect costs associated with constraints on the system
  - How to find the minimum system cost given
    - Generator costs and
    - System constraints
    - → Constrained optimization via linear programming

## Generator Cost Characteristics

## **Generator Costs**

- Many fixed and variable costs are associated with power system operation
  - The major variable cost is associated with generation
- The cost to generate a MWh can vary widely
  - For thermal units we have well-defined equations to calculate generating costs
  - For other generating units (e.g., hydro and nuclear) the cost is difficult to quantify

## Time Variation in Costs

#### **US Electricity Production Costs**



# Natural Gas Prices Over the Years (adjusted for inflation)



Close

(479) 293-4081

As we have already seen, different generators are used in different ways, as determined by their different costs...

## **Generator Loading**



To minimize total system generating costs we develop cost relationships between cost of power <u>output</u> and operating costs,



## **Mathematical Formulation of Costs**

- Typically curves can be approximated using
  - quadratic or cubic functions
  - piecewise linear functions
- Relying on the quadratic nature of HR, we will use a quadratic cost equation
- Standard quadratic representation is...?

$$C_i(P_{Gi}) = \alpha_i + \beta_i P_{Gi} + \gamma_i P_{Gi}^2$$
 \$/hr

## **Mathematical Formulation of Costs**

- From total cost to marginal cost...
- The <u>marginal cost</u> is one of the most important quantities in operating a power system
  - Marginal cost = incremental cost: <u>the cost of producing the next increment of power</u> (the next MWh)
- How do we find the marginal cost?

## **Discussion Questions**

- If we have 3 generators, our first-pass system cost equation is...?
- We find the minimum system cost by ...?
- How do we then find values for P<sub>Gi</sub> from each generator (our original goal)?
- What is missing for the actual problem of finding the minimum system operating cost?

## Summary

- Formulated the economic dispatch problem conceptually
- Examined the mathematical origin for generator costs
  - Defined heat rate
- Began mathematical formulation of the economic dispatch problem
- To be completed next Wednesday