JYOTHISHMATHI INSTITUTE OF TECHNOLOGY & SCIENCE

MICRO PROCESSORS & MICRO CONTROLLERS

Department of ECE Jyothishmathi Institute of Technology

Random Access Memory

Static Random Access Memory (SRAM)

Random Access Memory

k-bit address

- Decoder requires 2^k AND gates
 - Each AND gate has k inputs
- For large k this becomes prohibitive.
- Use <u>2-dimensional decoding</u>
 - Two decoders
 - Each decoder requires 2^(k/2) AND gates
 - Each AND gate has k/2 inputs
 - Far less combinational logic

- The size of a chip package is often dictated by the number of input and output signals.
- For large memories, the number of address lines often becomes prohibitive.
- Use <u>address multiplexing</u>
 - The same address lines are used both for the row address and the column address
 - Use time multiplexing to first latch the row address and then latch the column address

RAM Systems

- Often RAM chips are smaller than the required memory size.
- What if you need a wider memory?
 Larger word size
- What if you need a deeper memory?
 - Greater number of memory locations

- ROM store "permanent" binary information
 - One-time programmable memory
 - Multiple-time programmable memory
- Address and Data
 - k address bits
 - n data bits
- 2^k x n ROM includes
 - k-to-2^k decoder
 - n 2^k-input OR gates

Table 7.3 ROM Truth Table (Partial)

Inputs					Outputs							
I 4	I ₃	I 2	<i>I</i> 1	I ₀	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A 1	A ₀
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	0	1	0	1
0	0	0	1	1	1	0	1	1	0	0	1	0
		÷										
1	1	1	0	0	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	1	0	0	0	1	0
1	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	0	0	1	1	0	0	1	1

- EEPROM (E²PROM)
 - Electrically Erasable Programmable ROM
- Flash ROM
 - Similar to E²PROM
 - Has additional circuitry to selectively erase and program the memory in-circuit
 - Does not require a special programmer

Programmable Logic Devices

Programmable Logic Devices

- Programmable Logic Arrays (PLA)
- Programmable Array Logic (PAL)
- Simple Programmable Logic Device (SPLD)
- Complex Programmable Logic Device (CPLD)
- Field Programmable Gate Array (FPGA)