Combinational Circuits

Combinational Circuits

A combinational
${ }^{n}$ circuits
of input values

- 2 possible combinations

- Specific functions
- Adders, subtractors, comparators, decoders, encoders, and multiplexers
- MSI circuits or standard cells

Analysis Procedure

- Step 1: Label all gate outputs that are a function of input variables with arbitrary symbols - but with meaningful names. Determine the Boolean functions for each gate output.
- Step 2: Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates.
- Step 3: Repeat the process outlined in step 2 until the outputs of the circuit are obtained.
- Step 4: By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables.

Analysis Procedure Example

- A straight-forward procedure

Analysis Procedure Example

- Step 1:
- $F_{2}=A B+A C+B C$
- $T_{1}=A+B+C$
- $\mathrm{T}_{2}=\mathrm{ABC}$

Ste 2:
$\mathrm{P}_{\mathrm{T}_{3}=\mathrm{F}_{2}{ }^{\prime} \mathrm{T}_{1}}$
Step 3:

- $F_{1}=T_{3}+T_{2}$

Step 4:

$$
\begin{aligned}
& F_{1}=T_{3}+T_{2}=F_{2}{ }^{\prime} T_{1}+A B C \\
& =(A B+A C+B C)^{\prime}(A+B+C)+A B C \\
& =\left(A^{\prime}+B^{\prime}\right)\left(A^{\prime}+C^{\prime}\right)\left(B^{\prime}+C^{\prime}\right)(A+B+C)+A B C \\
& =\left(A^{\prime}+B^{\prime} C^{\prime}\right)\left(A B^{\prime}+A C^{\prime}+B C^{\prime}+B^{\prime} C\right)+A B C \\
& =A^{\prime} B^{\prime}+A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime}+A B C
\end{aligned}
$$

Truth Table

Table 4.1
Truth Table for the Logic Diagram of Fig. 4.2

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{F}_{\mathbf{2}}$	$\boldsymbol{F}_{\mathbf{2}}^{\prime}$	$\boldsymbol{T}_{\mathbf{1}}$	$\boldsymbol{T}_{\mathbf{2}}$	$\boldsymbol{T}_{\mathbf{3}}$	$\boldsymbol{F}_{\mathbf{1}}$
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

Decoder

An n-to- m decoder

- a binary code of n bits $=2^{n}$ distinct information
- n input variables; up to 2^{n} output lines
- only one output can be active (high) at any time

Table 4.6
Truth Table of a Three-to-Eight-Line Decoder

Inputs		Outputs								
\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}		$\boldsymbol{D}_{\mathbf{0}}$	$\boldsymbol{D}_{\mathbf{1}}$	$\boldsymbol{D}_{\mathbf{2}}$	$\boldsymbol{D}_{\mathbf{3}}$	$\boldsymbol{D}_{\mathbf{4}}$	$\boldsymbol{D}_{\mathbf{5}}$	$\boldsymbol{D}_{\mathbf{6}}$
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

4×16 Decoder

Expansion

- two 3-to-8 decoder: a 4-to-16 decoder
4×16 decoder constructed with two 3×8 decoders

4-to-1-Line Multiplexer

