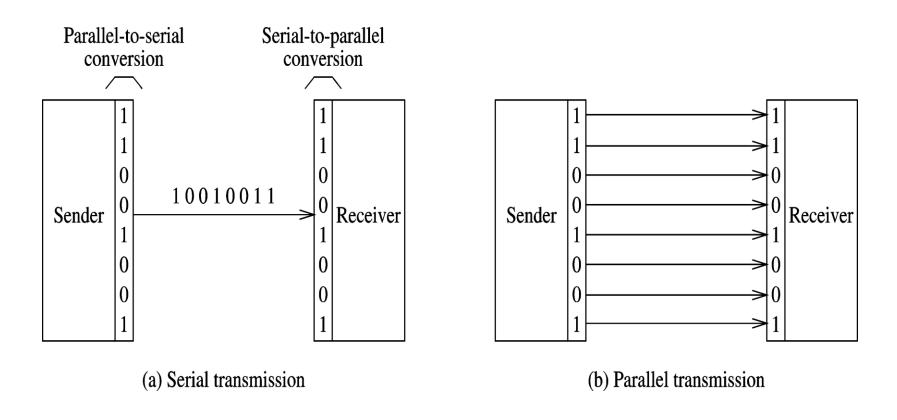

External Bus Interfacing Signals

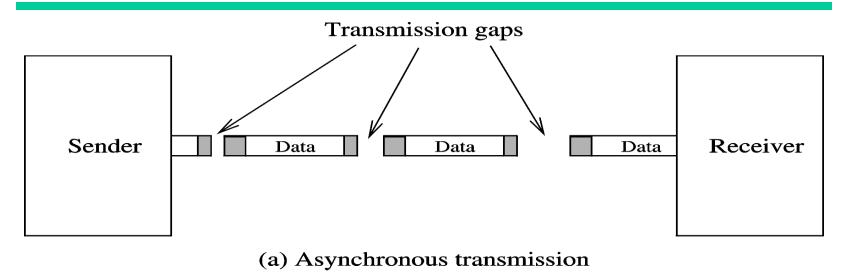
Dr.N.Umapathi Associate Professor/ECE JITs – Karimnagar

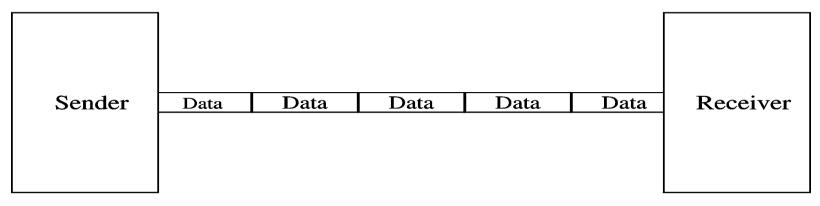
External Interface


• Two ways of interfacing I/O devices

© S. Dandamudi

Chapter 19: Page 2

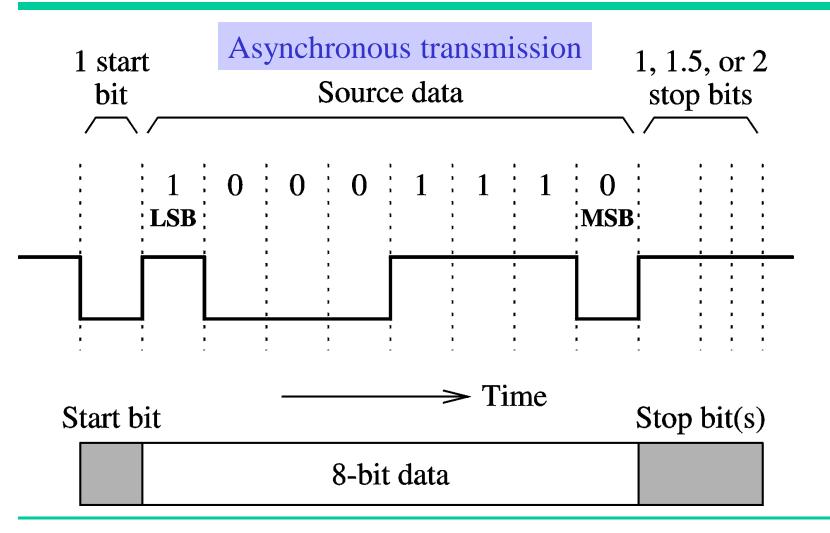

Two basic modes of data transmission



© S. Dandamudi

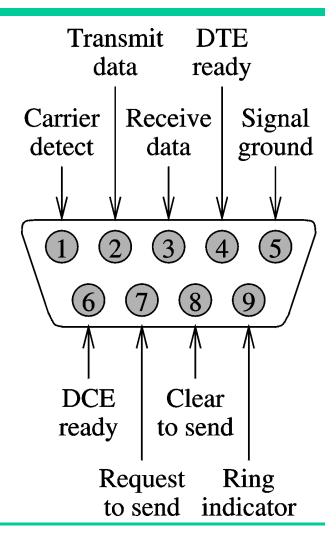
Chapter 19: Page 3

- Serial transmission
 - * Asynchronous
 - » Each byte is encoded for transmission
 - Start and stop bits
 - » No need for sender and receiver synchronization
 - * Synchronous
 - » Sender and receiver must synchronize
 - Done in hardware using phase locked loops (PLLs)
 - » Block of data can be sent
 - » More efficient
 - Less overhead than asynchronous transmission
 - » Expensive



(b) Synchronous transmission

© S. Dandamudi


Chapter 19: Page 5

© S. Dandamudi

Chapter 19: Page 6

- EIA-232 serial interface
 - * Low-speed serial transmission
 - * Adopted by Electronics Industry Association (EIA)
 - » Popularly known by its predecessor RS-232
 - * It uses a 9-pin connector DB-9
 - » Uses 8 signals
 - * Typically used to connect a modem to a computer

© S. Dandamudi

Chapter 19: Page 7

- Transmission protocol uses three phases
 - Connection setup
 - » Computer A asserts DTE Ready
 - Transmits phone# via Transmit Data line (pin 2)
 - » Modem B alerts its computer via Ring Indicator (pin 9)
 - Computer B asserts DTE Ready (pin 4)
 - Modem B generates carrier and turns its DCE Ready
 - » Modem A detects the carrier signal from modem B
 - Modem A alters its computer via Carrier Detect (pin 1)
 - Turns its DCE Ready
 - * Data transmission
 - » Done by handshaking using
 - request-to-send (RTS) and clear-to-send (CTS) signals
 - Connection termination
 - » Done by deactivating RTS

© S. Dandamudi

Chapter 19: Page 8

- Parallel printer interface
 - * A simple parallel interface
 - * Uses 25-pin DB-25
 - » 8 data signals
 - Latched by strobe (pin 1)
 - » Data transfer uses simple handshaking
 - Uses acknowledge (CK) signal
 - → After each byte, computer waits for ACK
 - » 5 lines for printer status
 - Busy, out-of-paper, online/offline, autofeed, and fault
 - » Can be initialized with INIT
 - Clears the printer buffer and resets the printer

© S. Dandamudi

Chapter 19: Page 9

Table 19.3 Parallel printer interface signals						
Pin #	Signal	Signal direction	Signal function			
1	STROBE	$PC \Longrightarrow printer$	Clock used to latch data			
2	Data 0	$PC \Longrightarrow printer$	Data bit 0 (LSB)			
3	Data 1	$PC \Longrightarrow printer$	Data bit 1			
4	Data 2	$PC \Longrightarrow printer$	Data bit 2			
5	Data 3	$PC \Longrightarrow printer$	Data bit 3			
6	Data 4	$PC \Longrightarrow printer$	Data bit 4			
7	Data 5	$PC \Longrightarrow printer$	Data bit 5			
8	Data 6	$PC \Longrightarrow printer$	Data bit 6			
9	Data 7	$PC \Longrightarrow printer$	Data bit 7 (MSB)			
10	ACK	printer \Longrightarrow PC	Printer acknowledges receipt of data			
11	BUSY	printer \Longrightarrow PC	Printer is busy			
12	POUT	printer \Longrightarrow PC	Printer is out of paper			
13	SEL	printer \Longrightarrow PC	Printer is online			
14	AUTO FEED	printer \Longrightarrow PC	Autofeed is on			
15	FAULT	printer \Longrightarrow PC	Printer fault			
16	INIT	$PC \Longrightarrow printer$	Clears printer buffer and resets printer			
17	SLCT IN	$PC \Longrightarrow printer$	TTL high level			
18–25	Ground	N/A	Ground reference			

2003

© S. Dandamudi

Chapter 19: Page 10

• SCSI

- * Pronounced "scuzzy"
- * Small Computer System Interface
 - » Supports both internal and external connection
- * Comes in two bus widths
 - » 8 bits
 - Known as *narrow SCSI*
 - Uses a 50-pin connector
 - Device id can range from 0 to 7
 - » 16 bits
 - Known as wide SCSI
 - Uses a 68-pin connector
 - Device id can range from 0 to 15

© S. Dandamudi

Chapter 19: Page 11

Table 19.4 Types of SCSI					
SCSI type	Bus width (bits)	Transfer rate MB/s			
SCSI 1	8	5			
Fast SCSI	8	10			
Ultra SCSI	8	20			
Ultra 2 SCSI	8	40			
Wide Ultra SCSI	16	40			
Wide Ultra 2 SCSI	16	80			
Ultra 3 (Ultra 160) SCSI	16	160			
Ultra 4 (Ultra 320) SCSI	16	320			

2003

© S. Dandamudi

Chapter 19: Page 12

Table 19.5 Narrow SCSI signals					
Description	Signal	Pin	Pin	Signal	Description
Twisted pair ground	GND	1	26	D0	Data 0
Twisted pair ground	GND	2	27	D1	Data 1
Twisted pair ground	GND	3	28	D2	Data 2
Twisted pair ground	GND	4	29	D3	Data 3
Twisted pair ground	GND	5	30	D4	Data 4
Twisted pair ground	GND	6	31	D5	Data 5
Twisted pair ground	GND	7	32	D6	Data 6
Twisted pair ground	GND	8	33	D7	Data 7
Twisted pair ground	GND	9	34	DP	Data parity bit
Ground	GND	10	35	GND	Ground
Ground	GND	11	36	GND	Ground
Reserved		12	37		Reserved
No connection		13	38	TermPwr	Termination power (+5 V) cont'd

Table 19.5 Narrow SCSI signals

© S. Dandamudi

Chapter 19: Page 13

Reserved		14	39		Reserved
Ground	GND	15	40	GND	Ground
Twisted pair ground	GND	16	41	ATN	Attention
Ground	GND	17	42	GND	Ground
Twisted pair ground	GND	18	43	BSY	Busy
Twisted pair ground	GND	19	44	ACK	Acknowledge
Twisted pair ground	GND	20	45	RST	Reset
Twisted pair ground	GND	21	46	MSG	Message
Twisted pair ground	GND	22	47	SEL	Selection
Twisted pair ground	GND	23	48	C/D	Command/data
Twisted pair ground	GND	24	49	REQ	Request
Twisted pair ground	GND	25	50	I/O	Input/output

© S. Dandamudi

- SCSI uses client-server model
 - * Uses terms *initiator* and *target* for client and server
 - » Initiator issues commands to targets to perform a task
 - Initiators are typically SCSI host adaptors
 - » Targets receive the command and perform the task
 - Targets are SCSI devices like disk drives
- SCSI transfer proceeds in phases
 - * Command
 - * Message in
 - * Message out
 - * Data in
 - * Data out
 - * Status

IN and OUT from the initiator point of view

© S. Dandamudi

Chapter 19: Page 15

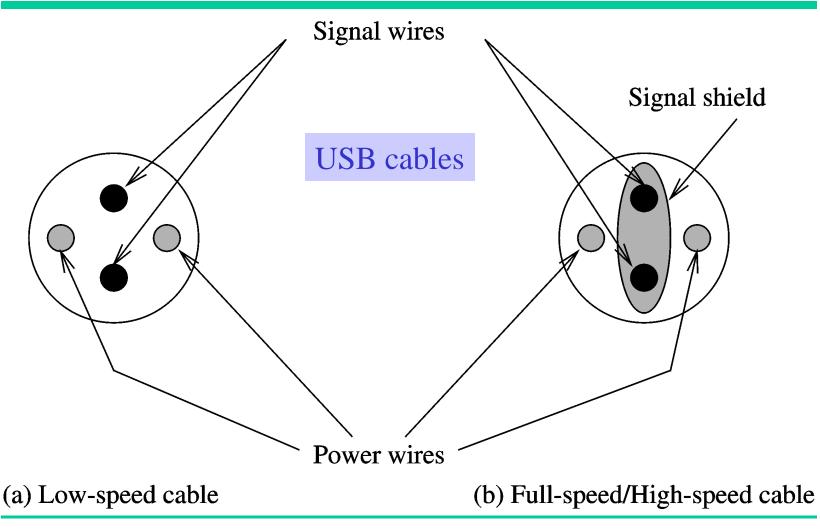
- * SCSI uses asynchronous mode for all bus negotiations
 - » Uses handshaking using REQ and ACK signals for each byte of data
- * On a synchronous SCSI
 - » Data are transferred synchronously
 - » REQ-ACK signals are not used for each byte
 - » A number of bytes (e.g., 8) can be sent without waiting for ACK
 - Improves throughput
 - Minimizes adverse impact of cable propagation delay

© S. Dandamudi

USB

- Universal Serial Bus
 - * Originally developed in 1995 by a consortium including
 - » Compaq, HP, Intel, Lucent, Microsoft, and Philips
 - * USB 1.1 supports
 - » Low-speed devices (1.5 Mbps)
 - » Full-speed devices (12 Mbps)
 - * USB 2.0 supports
 - » High-speed devices
 - Up to 480 Mbps (a factor of 40 over USB 1.1)
 - » Uses the same connectors
 - Transmission speed is negotiated on device-by-device basis

© S. Dandamudi

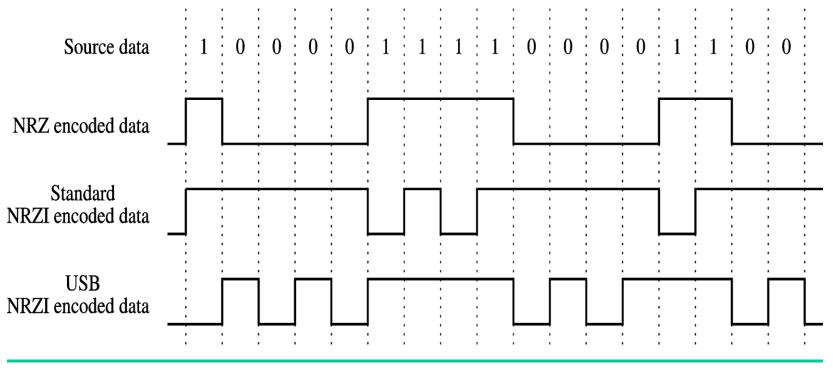

Chapter 19: Page 17

- Motivation for USB
 - * Avoid device-specific interfaces
 - » Eliminates multitude of interfaces
 - PS/2, serial, parallel, monitor, microphone, keyboard,...
 - * Avoid non-shareable interfaces
 - » Standard interfaces support only one device
 - * Avoid I/O address space and IRQ problems
 - » USB does not require memory or address space
 - * Avoid installation and configuration problems
 - » Don't have to open the box to install and configure jumpers
 - * Allow hot attachment of devices

- Additional advantages of USB
 - * Power distribution
 - » Simple devices can be bus-powered
 - Examples: mouse, keyboards, floppy disk drives, wireless LANs, ...
 - * Control peripherals
 - » Possible because USB allows data to flow in both directions
 - * Expandable through hubs
 - Power conservation
 - » Enters suspend state if there is no activity for 3 ms
 - * Error detection and recovery
 - » Uses CRC

© S. Dandamudi

Chapter 19: Page 19



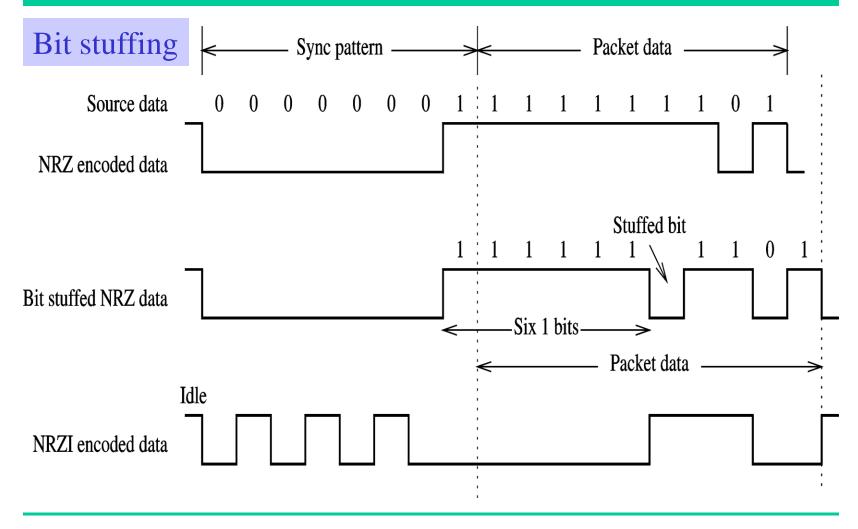
© S. Dandamudi

Chapter 19: Page 20

• USB encoding

- * Uses NRZI encoding
 - » Non-Return to Zero-Inverted

© S. Dandamudi


Chapter 19: Page 21

- NRZI encoding
 - * A signal transition occurs if the next bit is zero
 » It is called *differential encoding*
 - * Two desirable properties
 - » Signal transitions, not levels, need to be detected
 - » Long string of zeros causes signal changes
 - * Still a problem
 - » Long strings of 1s do not causes signal change
 - * To solve this problem
 - » Uses bit stuffing

– A zero is inserted after every six consecutive 1s

© S. Dandamudi

Chapter 19: Page 22

© S. Dandamudi

Chapter 19: Page 23

- Transfer types
 - » Four types of transfer
 - * Interrupt transfer
 - » Uses polling
 - Polling interval can range from 1 ms to 255 ms
 - * Isochronous transfer
 - » Used in real-time applications that require constant data transfer rate
 - Example: Reading audio from CD-ROM
 - » These transfers are scheduled regularly
 - » Do not use error detection and recovery

Control transfer

- » Used to configure and set up USB devices
- » Three phases
 - Setup stage
 - →Conveys type of request made to target device
 - Data stage
 - →Optional stage
 - →Control transfers that require data use this stage
 - Status stage
 - \rightarrow Checks the status of the operation
- » Allocates a guaranteed bandwidth of 10%
- » Error detection and recovery are used
 - Recovery is by means of retries

© S. Dandamudi

Chapter 19: Page 25

- * Bulk transfer
 - » For devices with no specific data transfer rate requirements
 - Example: sending data to a printer
 - » Lowest priority bandwidth allocation
 - » If the other three types of transfers take 100% of the bandwidth
 - Bulk transfers are deferred until load decreases
 - » Error detection and recovery are used

- Recovery is by means of retries

- USB architecture
 - * USB host controller
 - » Initiates transactions over USB
 - * Root hub
 - » Provides connection points
 - * Two types of host controllers
 - » Open host controller (OHC)
 - Defined by Intel
 - » Universal host controller (UHC)
 - Specified by National Semiconductor, Microsoft, Compaq
 - » Difference between the two
 - How they schedule the four types of transfers

- UHC scheduling
 - * Schedules periodic transfers first
 - » Periodic transfers: isochronous and interrupts
 - » Can take up to 90% of bandwidth
 - * These transfers are followed by control and bulk transfers
 - » Control transfers are guaranteed 10% of bandwidth
 - * Bulk transfers are scheduled only if there is bandwidth available

© S. Dandamudi

Chapter 19: Page 28

\sim 1 ms \rightarrow							
SOF	Isochronous	Interrupt	Control	Bulk			
	data	data	data	data			
(a) UHC scheduling							
SOF	Nonperiodic	Periodic data		Nonperiodic			
	data	(Isochronous & interrupt)		data			

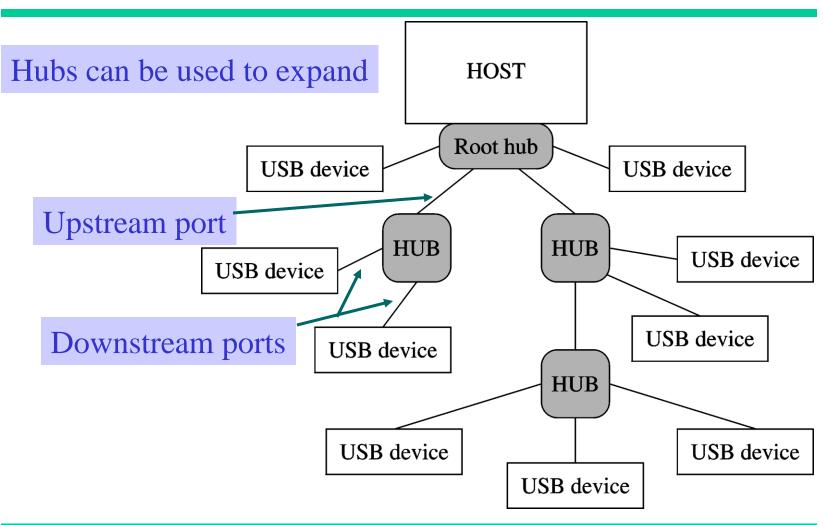
(b) OHC scheduling

© S. Dandamudi

Chapter 19: Page 29

- OHC scheduling
 - * Different from UHC scheduling
 - * Reserves space for non-periodic transfers first
 - » Non-periodic transfers: control and bulk
 - » 10% bandwidth reserved
 - * Next periodic transfers are scheduled
 - » Guarantees 90% bandwidth
 - * Left over bandwidth is allocated to non-periodic transfers

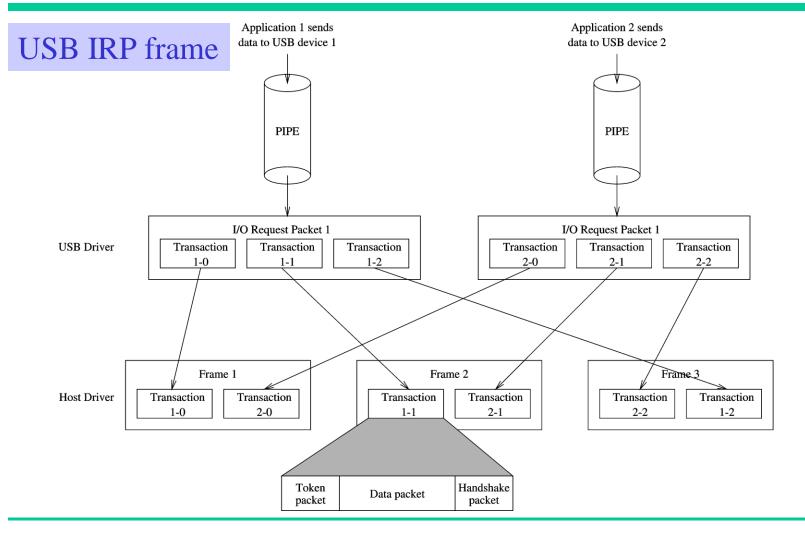
© S. Dandamudi


Chapter 19: Page 30

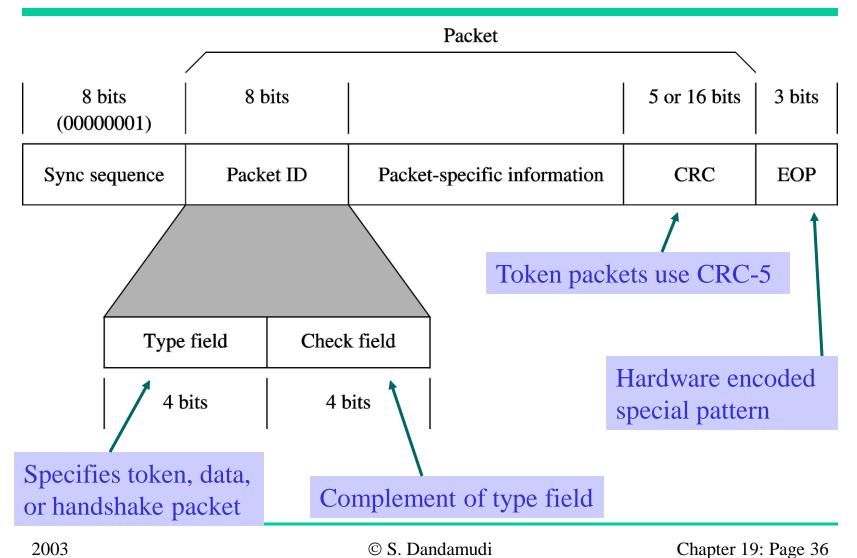
- Bus powered devices
 - * Low-power
 - » Less than 100 mA
 - » Can be bus-powered
 - * High-powered
 - » Between 100 mA and 500 mA
 - Full-powered ports can power these devices
 - » Can be designed to have their own power
 - » Operate in three modes
 - Configured (500 mA)
 - Unconfigured (100 mA)
 - Suspended (about 2.5 mA)

© S. Dandamudi

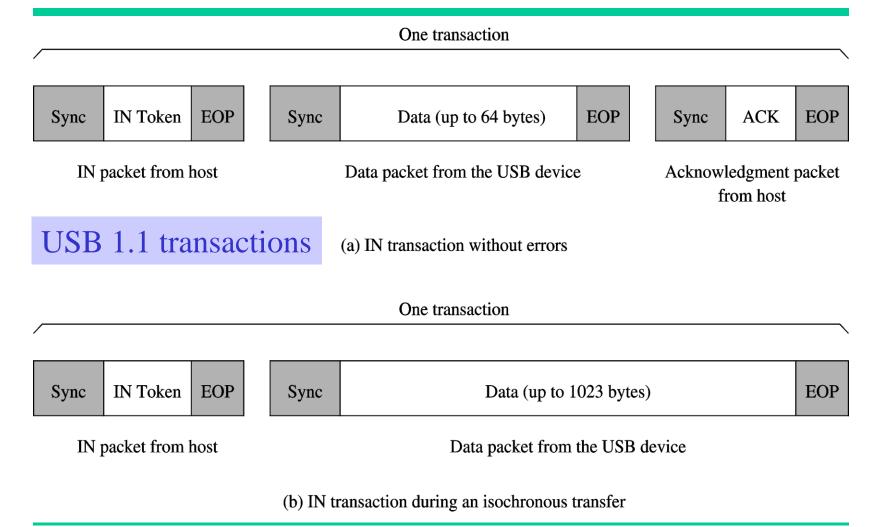
Chapter 19: Page 31


- USB hubs
 - * Bus-powered
 - » No extra power supply required
 - » Must be connected to an upstream port that can supply 500 mA
 - » Downstream ports can only supply 100 mA
 - Number of ports is limited to four
 - Support only low-powered devices
 - * Self-powered
 - » Support 4 high-powered devices
 - » Support 4 bus-powered USB hubs
 - * Most 4-port hubs are dual-powered

© S. Dandamudi


Chapter 19: Page 33

- USB transactions
 - * Transfers are done in one or more transactions
 - » Each transaction consists of several packets
 - * Transactions may have between 1 and 3 phases
 - » Token packet phase
 - Specifies transaction type and target device address
 - » Data packet phase (optional)
 - Maximum of 1023 bytes are transferred
 - » Handshake packet phase
 - Except for isochronous transfers, others use error detection for guaranteed delivery
 - Provides feedback on whether data has been received without error



© S. Dandamudi

Chapter 19: Page 35

USB (cont'd)

© S. Dandamudi

Chapter 19: Page 37

USB (cont'd)

• USB 2.0

- * USB 1.1 uses 1 ms frames
- * USB 2.0 uses 125 µs frames
 - » 1/8 of USB 1.1
- * Supports 40X data rates
 - » Up to 480 Mbps
- * Competitive with
 - » SCSI
 - » IEEE 1394 (FireWire)
- * Widely available now

Chapter 19: Page 38

IEEE 1394

- Apple originally developed this standard for highspeed peripherals
 - * Known by a variety of names
 - » Apple: FireWire
 - » Sony: i.ILINK
 - * IEEE standardized it as IEEE 1394
 - » First released in 1995 as IEEE 1394-1995
 - » A slightly revised version as 1394a
 - » Next version 1394b
 - * Shares many of the features of USB

© S. Dandamudi

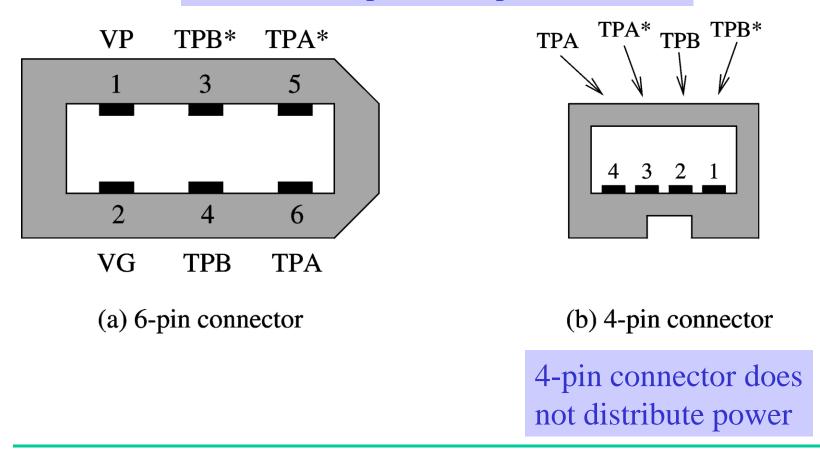
Chapter 19: Page 39

- Advantages
 - * High speed
 - » Supports three speeds
 - 100, 200, 400 Mbps
 - →Competes with USB 2.0
 - Plans to boost it to 3.2 Gbps
 - * Hot attachment
 - » Like USB
 - » No need to shut down power to attach devices
 - * Peer-to-peer support
 - » USB is processor-centric
 - » Supports peer-to-peer communication without involving the processor

© S. Dandamudi

Chapter 19: Page 40

- * Expandable bus
 - » Devices can be connected in daisy-chain fashion
 - » Hubs can used to expand

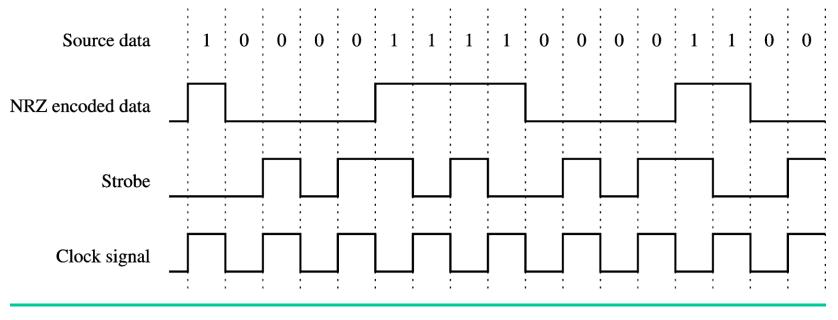

* Power distribution

- » Like the USB, cables distribute power
 - Much higher power than USB
 - → Voltage between 8 and 33 V
 - →Current an be up to 1.5 Amps
- * Error detection and recovery
 - » As in USB, uses CRC
 - » Uses retransmission in case of error
- * Long cables
 - » Like the USB

© S. Dandamudi

Chapter 19: Page 41

IEEE 1394 6-pin and 4-pin connectors

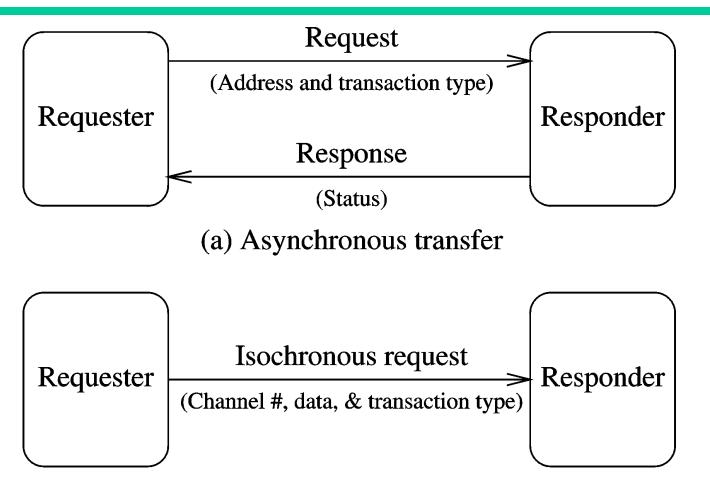


© S. Dandamudi

Chapter 19: Page 42

• Encoding

- * Uses a simple NRZ encoding
- * Strobe signal is encoded
 - » Changes the signal even if successive bits are the same

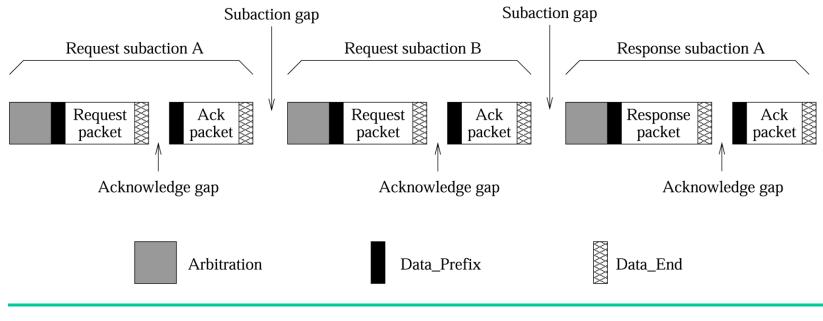

2003

© S. Dandamudi

Chapter 19: Page 43

- Transfer types
 - * Asynchronous
 - » For applications that require correct delivery of data
 - Example: writing a file to a disk drive
 - » Uses an acknowledgement to confirm delivery
 - » Guaranteed bandwidth of 20%
 - * Isochronous
 - » For real-time applications
 - » No acknowledgement
 - » Up to 80% of bandwidth allocated
 - * Bandwidth allocation on a cycle-by-cycle basis
 - » Cycle time: 125 μ s

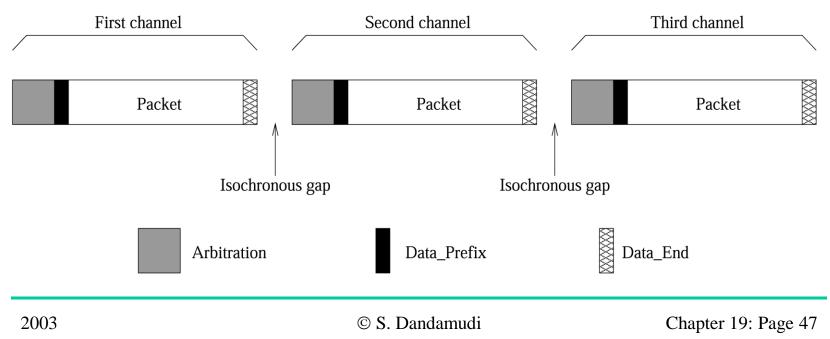
Chapter 19: Page 44



(b) Isochronous transfer

© S. Dandamudi

Chapter 19: Page 45


- Transactions
 - * Follow request and reply format
 - * Each packet is encapsulated between Data_Prefix and Data_end

© S. Dandamudi

Chapter 19: Page 46

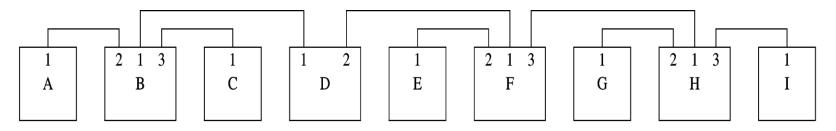
- Isochronous transactions
 - * Similar to asynchronous transactions
 - * Main difference:
 - » No acknowledgement packets

- Bus arbitration
 - * Needed because of peer-to-peer communication
 - * Arbitration must respect
 - » Bandwidth allocation to isochronous channels
 - » Fairness-based allocation for asynchronous channels
 - * Uses fairness interval
 - » During each interval
 - All nodes with pending asynchronous transaction are allowed bus ownership once
 - * Nodes with pending isochronous transactions go through arbitration during each cycle
 - * IRM is used for isochronous bandwidth allocations

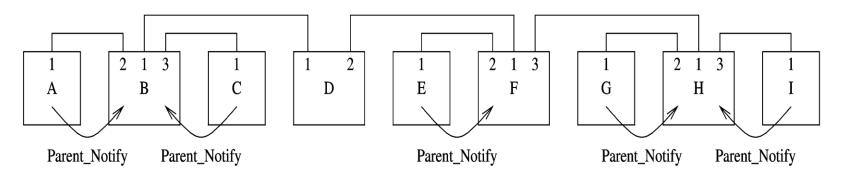
© S. Dandamudi

Chapter 19: Page 48

- Configuration
 - * Does not require the host system
 - * Consists of two main phases
 - » Tree identification
 - Used to find the network topology
 - Uses two special signals


Parent_notify and Child_Notify

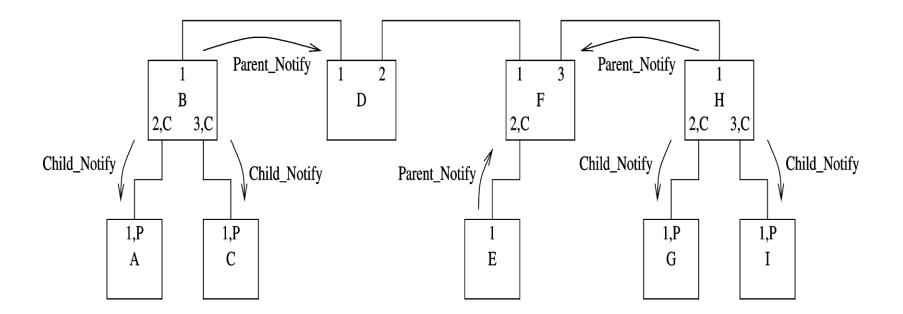
- » Self-identification
 - Done after the tree identification
 - Assigns unique ids to nodes


© S. Dandamudi

Chapter 19: Page 49

Tree identification

(a) Original unconfigured network

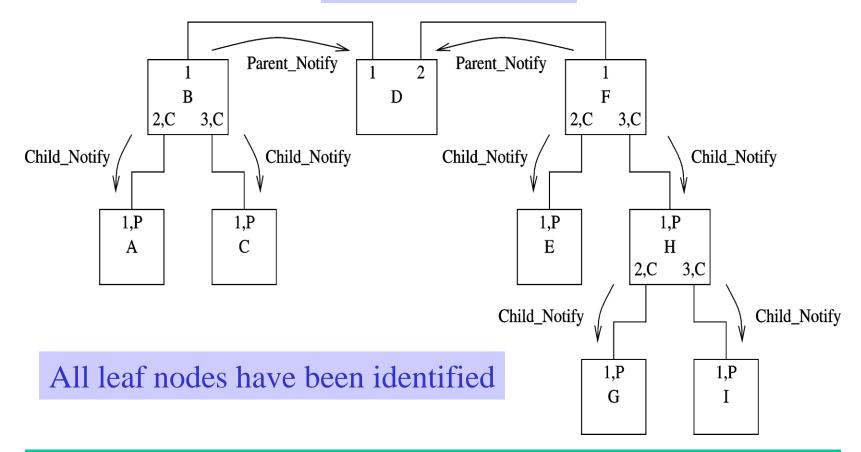


(b) Leaf nodes send Parent_Notify signal to their parent nodes

© S. Dandamudi

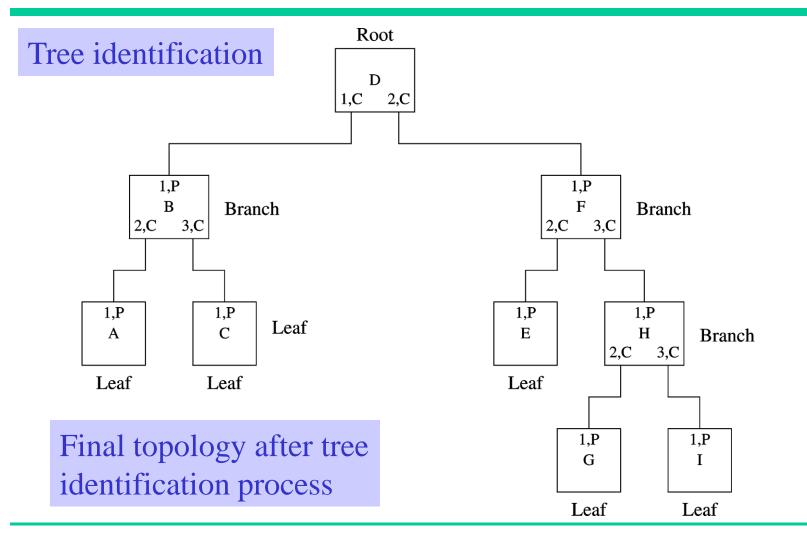
Chapter 19: Page 50

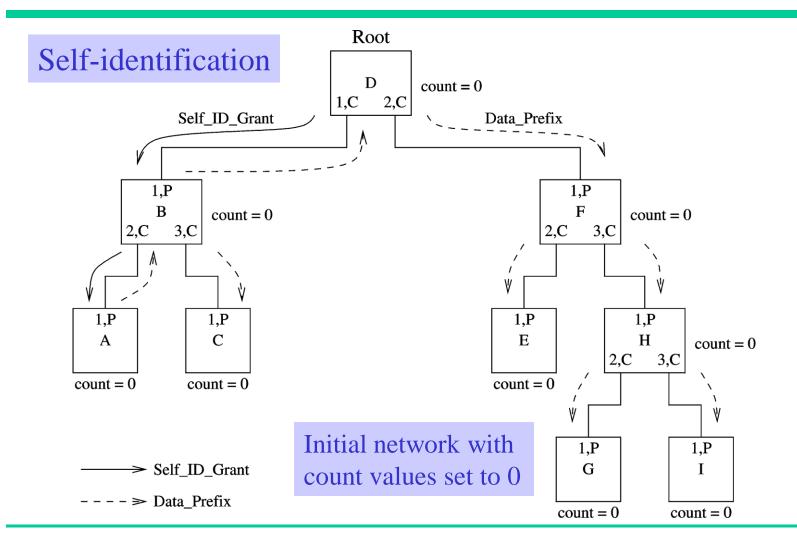
Tree identification



(c) Topology starts to take shape with nodes A, C, E, G, and I identified as leaf nodes

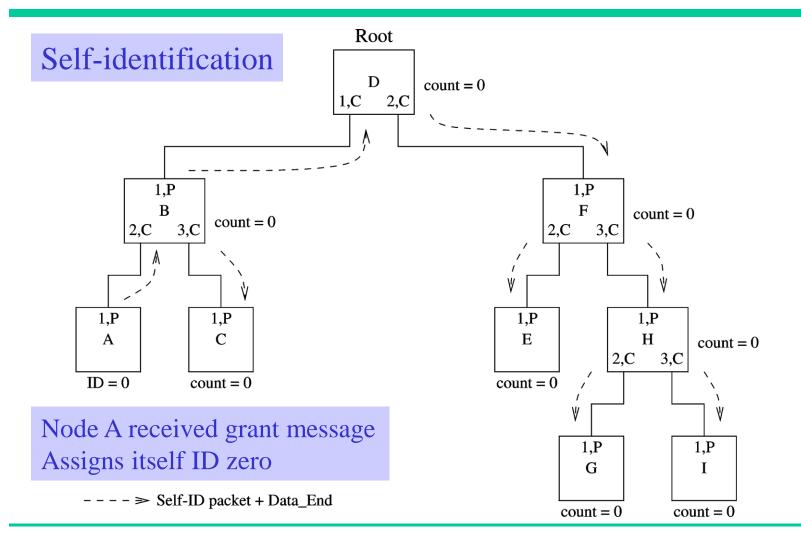
© S. Dandamudi


Chapter 19: Page 51

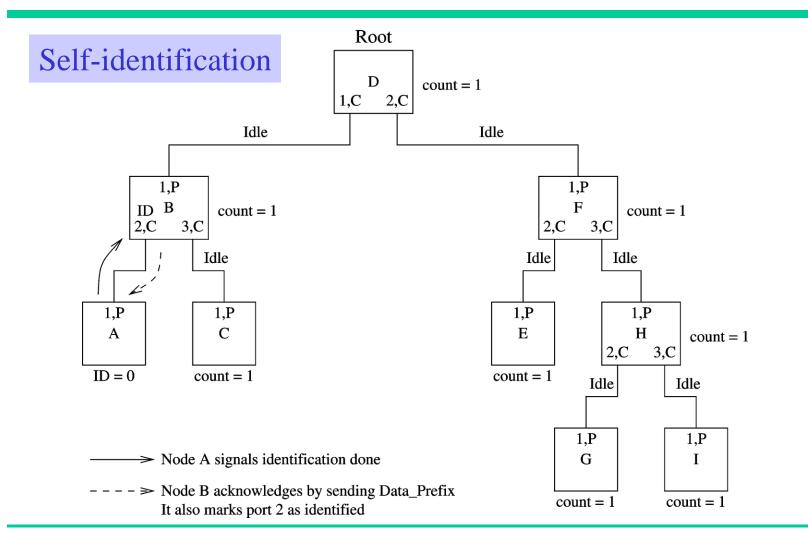

© S. Dandamudi

Chapter 19: Page 52

© S. Dandamudi

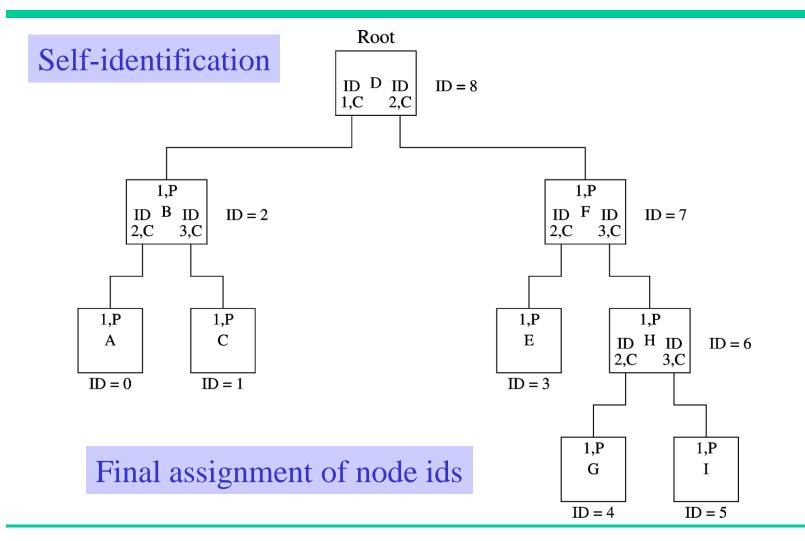

Chapter 19: Page 53

2003


© S. Dandamudi

Chapter 19: Page 54

© S. Dandamudi


Chapter 19: Page 55

2003

© S. Dandamudi

Chapter 19: Page 56

2003

© S. Dandamudi

Chapter 19: Page 57

Bus Wars

- SCSI is dominant in disk and storage device interfaces
 - * Parallel interface
 - * Its bandwidth could go up to 640 MB/s
- IEEE 1394
 - * Serial interface
 - * Supports peer-to-peer applications
 - * Dominant in video applications
- USB
 - * Useful in low-cost, host-to-peripheral applications
 - * USB 2.0 provides high-speed support

Last slide

© S. Dandamudi

Chapter 19: Page 58