JYOTHISHMATHI INSTITUTE OF TECHNOLOGY AND SCIENCE

MACHINE LEARNING

Prof: DR.M.SUJATHA

Basic Machine Learning idea

- Receive a collection of observations associated with some action label
- Perform some kind of "Machine Learning" to be able to:
 - Receive a new observation
 - "Process" it and generate an action label that is based on previous observations
- Main Requirement: Good generalization

Learning Approaches

- Store observations in memory and retrieve
 - Simple, little generalization (Distance measure?)
- Learn a set of rules and apply to new data
 - Sometimes difficult to find a good model
 - Good generalization
- Estimate a "flexible model" from the data
 - Generalization issues, data size issues

Storage & Retrieval

- Simple, computationally intensive
 - little generalization
- How can retrieval be performed?
 - Requires a "distance measure" between stored observations and new observation
- Distance measure can be given or "learned" (Clustering)

Learning Set of Rules

- How to create "reliable" set of rules from the observed data
 - Tree structures
 - Graphical models
- Complexity of the set of rules vs. generalization

Estimation of a flexible model

- What is a "flexible" model
 - Universal approximator
 - Reliability and generalization, Data size issues

Applications

- Control
 - Robot arm
 - Driving and navigating a car
 - Medical applications:
 - Diagnosis, monitoring, drug release, gene analysis
- Web retrieval based on user profile
 - Customized ads: Amazon
 - Document retrieval: Google

Related Disciplines

Example 1: Credit Risk Analysis

- Typical customer: bank.
- Database:
 - Current clients data, including:
 - basic profile (income, house ownership, delinquent account, etc.)
 - Basic classification.
- Goal: predict/decide whether to grant credit.

Example 1: Credit Risk Analysis

Rules learned from data:

IF Other-Delinquent-Accounts > 2 and

Number-Delinquent-Billing-Cycles >1

THEN DENY CREDIT

IF Other-Delinquent-Accounts = 0 and

Income > \$30k

THEN GRANT CREDIT

Example 2: Clustering news

- Data: Reuters news / Web data
- Goal: Basic category classification:
 - Business, sports, politics, etc.
 - classify to subcategories (unspecified)
- Methodology:
 - consider "typical words" for each category.
 - Classify using a "distance " measure.

Example 3: Robot control

- Goal: Control a robot in an unknown environment.
- Needs both
 - to explore (new places and action)
 - to use acquired knowledge to gain benefits.
- Learning task "control" what is observes!

Example 4: Medical Application

- Goal: Monitor multiple physiological parameters.
 - Control a robot in an unknown environment.
- Needs both
 - to explore (new places and action)
 - to use acquired knowledge to gain benefits.
- Learning task "control" what is observes!

History of Machine Learning

- 1960's and 70's: Models of human learning
 - High-level symbolic descriptions of knowledge, e.g., logical expressions or graphs/networks, e.g., (Karpinski & Michalski, 1966) (Simon & Lea, 1974).
 - Winston's (1975) structural learning system learned logic-based structural descriptions from examples.
- Minsky Papert, 1969
- 1970's: Genetic algorithms
 - Developed by Holland (1975)
- 1970's present: Knowledge-intensive learning
 - A tabula rasa approach typically fares poorly. "To acquire new knowledge a system must already possess a great deal of initial knowledge." Lenat's CYC project is a good example.

History of Machine Learning (cont'd)

- 1970's present: Alternative modes of learning (besides examples)
 - Learning from instruction, e.g., (Mostow, 1983) (Gordon & Subramanian, 1993)
 - Learning by analogy, e.g., (Veloso, 1990)
 - Learning from cases, e.g., (Aha, 1991)
 - Discovery (Lenat, 1977)
 - 1991: The first of a series of workshops on Multistrategy Learning (Michalski)
- 1970's present: Meta-learning
 - Heuristics for focusing attention, e.g., (Gordon & Subramanian, 1996)
 - Active selection of examples for learning, e.g., (Angluin, 1987), (Gasarch & Smith, 1988), (Gordon, 1991)
 - Learning how to learn, e.g., (Schmidhuber, 1996)

History of Machine Learning (cont'd)

- 1980 The First Machine Learning Workshop was held at Carnegie-Mellon University in Pittsburgh.
- 1980 Three consecutive issues of the International Journal of Policy Analysis and Information Systems were specially devoted to machine learning.
- 1981 Hinton, Jordan, Sejnowski, Rumelhart, McLeland at UCSD
 - Back Propagation alg. PDP Book
- 1986 The establishment of the Machine Learning journal.
- 1987 The beginning of annual international conferences on machine learning (ICML). Snowbird ML conference
- 1988 The beginning of regular workshops on computational learning theory (COLT).
- 1990's Explosive growth in the field of data mining, which involves the application of machine learning techniques.

Bottom line from History

- 1960 The Perceptron (Minsky Papert)
- 1960 "Bellman Curse of Dimensionality"
- 1980 Bounds on statistical estimators (C. Stone)
- 1990 Beginning of high dimensional data (Hundreds variables)
- 2000 High dimensional data (Thousands variables)

A Glimpse in to the future

Today status:

- First-generation algorithms:
- Neural nets, decision trees, etc.

Future:

- Smart remote controls, phones, cars
- Data and communication networks, software

Type of models

- Supervised learning
 - Given access to classified data
- Unsupervised learning
 - Given access to data, but no classification
 - Important for data reduction
- Control learning
 - Selects actions and observes consequences.
 - Maximizes long-term cumulative return.

Learning: Complete Information

 Probability D₁ over and probability D₂ for

- Equally likely.
- Computing the probability of "smiley" given a point (x,y).
- Use Bayes formula.
- Let p be the probability.

Task: generate class label to a point at location (x,y)

- Determine between S or H by comparing the probability of P(S|(x,y)) to P(H|(x,y)).
- Clearly, one needs to know all these probabilities

Predictions and Loss Model

- How do we determine the optimality of the prediction
- We define a loss for every prediction
- Try to minimize the loss
 - Predict a Boolean value.
 - each error we lose 1 (no error no loss.)
 - Compare the probability p to 1/2.
 - Predict deterministically with the higher value.
 - Optimal prediction (for zero-one loss)
- Can not recover probabilities!

Bayes Estimator

 A Bayes estimator associated with a prior distribution p and a loss function L is an estimator d which minimizes L(p,d). For every x, it is given by d(x), argument of min on estimators d of p(p,d|x). The value r(p) = r(p,dap) is then called the **Bayes** risk.

Other Loss Models

- Quadratic loss
 - Predict a "real number" q for outcome 1.
 - Loss (q-p)² for outcome 1
 - Loss ([1-q]-[1-p])² for outcome 0
 - Expected loss: (p-q)²
 - Minimized for p=q (Optimal prediction)
- Recovers the probabilities
- Needs to know p to compute loss!

The basic PAC Model

- •A batch learning model, i.e., the algorithm is trained over some fixed data set
- Assumption: Fixed (Unknown distribution D of x in a domain X)
- The error of a hypothesis h w.r.t. a target concept f is
 e(h)= Pr_D[h(x) ≠ f(x)]
- •Goal: Given a collection of hypotheses H, find h in H that minimizes e(h).

The basic PAC Model

•As the distribution D is unknown, we are provided with a training data set of m samples S on which we can estimate the error:

$$e'(h) = 1/m |\{ x \in S | h(x) \neq f(x) \}|$$

• Basic question: How close is e(h) to e'(h)

Bayesian Theory

Prior distribution over H

Given a sample S compute a posterior distribution:

$$\Pr[h|S] = \frac{\Pr[S|h]\Pr[h]}{\Pr[S]}$$

Maximum Likelihood (ML) Pr[S|h]Maximum A Posteriori (MAP) Pr[h|S]Bayesian Predictor $\Sigma h(x) Pr[h|S]$.

Some Issues in Machine Learning

- What algorithms can approximate functions well, and when?
- How does number of training examples influence accuracy?
- How does complexity of hypothesis representation impact it?
- How does noisy data influence accuracy?

More Issues in Machine Learning

What are the theoretical limits of learnability?

- How can prior knowledge of learner help?
- What clues can we get from biological learning systems?
- How can systems alter their own representations?

Complexity vs. Generalization

- Hypothesis complexity versus observed error.
- More complex hypothesis have lower observed error on the training set,
- Might have higher true error (on test set).

Criteria for Model Selection

Minimum Description Length (MDL)

$$\varepsilon'(h)$$
 + |code length of h|

Structural Risk Minimization:

$$\varepsilon'(h) + \{ \log |H| / m \}^{\frac{1}{2}}$$
 m # of training samples

- Differ in assumptions about a priori Likelihood of h
- AIC and BIC are two other theory-based model selection methods

Weak Learning

Small class of predicates H

Weak Learning:

Assume that for *any* distribution D, there is some predicate heH that predicts better than 1/2+e.

Multiple Weak Learning

Strong Learning

Boosting Algorithms

Functions: Weighted majority of the predicates.

Methodology:

Change the distribution to target "hard" examples.

Weight of an example is exponential in the number of incorrect classifications.

Good experimental results and efficient algorithms.

Computational Methods

 How to find a hypothesis h from a collection H with low observed error.

- Most cases computational tasks are provably hard.
- Some methods are only for a binary h and others for both.

Nearest Neighbor Methods

Classify using near examples.

Assume a "structured space" and a "metric"

Separating Hyperplane

Perceptron: $sign(\Sigma x_i w_i)$

Find $w_1 \dots w_n$

Limited representation

Neural Networks

Sigmoidal gates:

$$a=\sum x_i w_i$$
 and $output = 1/(1 + e^{-a})$

Learning by "Back Propagation" of errors

Decision Trees

Decision Trees

Top Down construction: Construct the tree greedy, using a local index function. Ginni Index : G(x) = x(1-x), Entropy H(x) ...

Bottom up model selection:

Prune the decision Tree

while maintaining low observed error.

Decision Trees

- Limited Representation
- Highly interpretable
- Efficient training and retrieval algorithm
- Smart cost/complexity pruning
- Aim: Find a small decision tree with
 - a low observed error.

Support Vector Machine

Support Vector Machine

Project data to a high dimensional space.

Use a hyperplane in the LARGE space.

Choose a hyperplane with a large MARGIN.

Reinforcement Learning

Main idea: Learning with a Delayed Reward

Uses dynamic programming and supervised learning

- Addresses problems that can not be addressed by regular supervised methods
- E.g., Useful for Control Problems.

Dynamic programming searches for optimal policies.

Genetic Programming

A search Method.

Example: decision trees

Local mutation operations

Change a node in a tree

Cross-over operations

Replace a subtree by another tree

Keeps the "best" candidates Keep trees with low observed error

Unsupervised learning: Clustering

Unsupervised learning: Clustering

- For a single hypothesis h:
 - Given an observed error
 - Bound the true error
- Markov Inequality

Chebyshev Inequality

Chernoff Inequality

$$x_i \in \{0,1\}$$
 i.i.d, $\mathbf{R}(x_i = 1) = p$

Convergence rate of empirical mean to the true mean

- Switching from h₁ to h₂:
 - Given the observed errors
 - Predict if h₂ is better.
- Total error rate
- Cases where $h_1(x) \neq h_2(x)$
 - More refine

Course structure

- Store observations in memory and retrieve
 - Simple, little generalization (Distance measure?)
- Learn a set of rules and apply to new data
 - Sometimes difficult to find a good model
 - Good generalization
- Estimate a "flexible model" from the data
 - Generalization issues, data size issues
 - Some Issues in Machine Learning
 - ffl What algorithms can approximate functions well

Fourier Transform

$$f(x) = \sum \alpha_z \chi_z(x) \qquad \chi_z(x) = (-1)^{\langle x,z \rangle}$$

Many Simple classes are well approximated using large coefficients.

Efficient algorithms for finding large coefficients.

General PAC Methodology

Minimize the observed error.

Search for a small size classifier

Hand-tailored search method for specific classes.

Other Models

Membership Queries

