
JYOTHISHMATHI INSTITUTE OF TECHNOLOGY &

SCIENCE, KARIMNAGAR

COMPILER DESIGN

K.RAJ KUMAR

ASST. PROFESSOR

CSE

Ambiguity in Grammar

◼ Every ambiguous grammar fails to be
LR.

◼ Certain types of ambiguous grammar
are useful in the specification and
implementation of the languages.

◼ For language constructs like expressions
an ambiguous grammar provides a shorter
more natural specification than any
equivalent unambiguous grammar.

◼ Used in isolating common occurring
syntactic constructs for special case
optimization.

• We can specify disambiguating

rules that allow only one parse

tree for each sentence. So that

overall language construct still

remains unambiguous.

◼ Using Precedence and
Associativity to Resolve Parsing
Conflicts :

◼ Consider arithmetic expressions
in programming languages with
operator + and * .

◼ Grammar rules:

◼ E ➔ E + E | E * E | (E) | id
---- (1)

◼ The corresponding

unambiguous grammar is:

◼ E ➔ E + T | T

◼ T ➔ T * F | F --(2)

◼ F ➔ (E) | id

◼ This unambiguous grammar

generates the same language

but gives lower precedence to +

over * and makes both

operators left associative.

◼ Benefits of using ambiguous

grammar:
◼ Using ambiguous grammar makes us able to

change the associativities or/and

precedence levels of + and * without

disturbing the productions of (1) or the

number of states in the resulting parser.

◼ Parser for (2) will spend substantial fractions

of its time reducing by the production E → T,

T→ F .Whose sole function is to enforce

associativity and precedence.

◼ Sets of LR (0) for augmented
grammar:

I0 :

E’ → .E

E → .E - E
E → .E * E

E → .(E)
E → .id

I1 :

E’ → E .

E → E. + E

E → E . * E

I2 :

E → (.E)

E → E. + E

E → .E * E

E → .(E)

E → .id

I3 : E → id.

I4 :

E → E + .E

E → .E + E

E → .E * E

E → .(E)

E → .id

I5 :

E → E * .E

E → .E - E

E → .E * E

E → .(E)

E → .id

I6 : E → (E.)

E → E. + E

E → E. * E

I7 :

E → E + E.

E → E. + E

E → .E * E

I8 : E → E * E.

E → E. + E

E → E.* E

I9 : E → (E).

◼ Since the grammar is ambiguous
parsing actions conflict will occur.
The states corresponding to items I7
and I8 will generate these conflicts.
These conflicts can be resolved
using the precedence and
associativity information for + and *.

◼ Consider the input id + id * id which
causes a parser based upon above
states to enter state 7 after
processing id + id; in particular
parser reaches configuration

◼ Stack

Input

◼ 0 E 1 + 4 E 7

* id $

Assuming that * takes precedence over +, we
know that the parser should shift * on to the
stack, preparing to reduce the * and its
surrounding id’s to an expression. On the
other hand, if + takes the precedence over
*, we know that parser should reduce E + E
to E.

Thus the relative precedence of + followed by
* uniquely determines how the parsing
conflict between reducing E → E + E and
shifting on * in state 7 should be resolved.

Similarly if the input has been id + id +id the parser
would still reach the configuration in which it had
stack 0 E 1 + 4 E 7 after processing input id + id .

On input + there is again shift/reduce conflict in state 7.
Now, however, the associativity of the + operator
determines how this conflict should be resolved.

If + is left associative, the correct action should to
reduce by E → E + E i.e the id’s surrounding the
first + must be grouped first.

So, we can choose from the conflict which rule should
be given preference according to our requirements.
Proceeding in this way we get the unambiguous
parsing table as follows

STATE Action

Id + * () $

goto

0 s3 s2 1

1 s4 s5 accp

2 s3 s2 6

3 r4 r4 r4 r4

4 s3 s2 8

5 s3 s2 8

6 s4 s5 s9

7 r1 s5 r1 r1

8 r2 r2 r2 r2

9 r3 r3 r3 r3

