
DESIGN AND ANALYSIS OF ALGORITHMS

G. Srilatha
Asst. Prof.

Department of CSE
Jyothishmathi Institute of Technology & Science

Given some items, pack the knapsack to get

the maximum total value. Each item has some

weight and some value. Total weight that we can

carry is no more than some fixed number W.

So we must consider weights of items as well as

their values.

Item # Weight Value

1 1 8

2 3 6

3 5 5

0-1 Knapsack problem

G. Srilatha, CSE, JITS

Knapsack problem

There are two versions of the problem:
1. “0-1 knapsack problem”

• Items are indivisible; you either take an item or not. Some
special instances can be solved with dynamic programming

2. “Fractional knapsack problem”
• Items are divisible: you can take any fraction of an item

G. Srilatha, CSE, JITS

0-1 Knapsack problem

• Given a knapsack with maximum capacity W, and a set S

consisting of n items

• Each item i has some weight wi and benefit value bi (all wi and

W are integer values)

• Problem: How to pack the knapsack to achieve maximum total

value of packed items?

G. Srilatha, CSE, JITS

0-1 Knapsack problem

• Problem, in other words, is to find

G. Srilatha, CSE, JITS





Ti

i

Ti

i Wwb subject to max

The problem is called a “0-1” problem,

because each item must be entirely

accepted or rejected.

Defining a Subproblem

If items are labeled 1..n, then a subproblem
would be to find an optimal solution for Sk

= {items labeled 1, 2, .. k}

• This is a reasonable subproblem definition.

• The question is: can we describe the final
solution (Sn) in terms of subproblems (Sk)?

• Unfortunately, we can’t do that.

G. Srilatha, CSE, JITS

Max weight: W = 20

For S4:

Total weight: 14

Maximum benefit: 20

w1 =2

b1 =3

w2 =4

b2 =5

w3 =5

b3 =8

w4 =3

b4 =4 wi bi

10

85

54

43

32

Weight Benefit

9

Item

#

4

3

2

1

5

S4

S5

w1 =2

b1 =3

w2 =4

b2 =5

w3 =5

b3 =8

w5 =9

b5 =10

For S5:

Total weight: 20

Maximum benefit: 26

Solution for S4 is

not part of the

solution for S5!!!

?

Defining a Subproblem

G. Srilatha, CSE, JITS

Defining a Subproblem

• As we have seen, the solution for S4 is not part
of the solution for S5

• So our definition of a subproblem is flawed
and we need another one!

G. Srilatha, CSE, JITS

Defining a Subproblem

• Given a knapsack with maximum capacity W, and a set S

consisting of n items

• Each item i has some weight wi and benefit value bi (all wi and

W are integer values)

• Problem: How to pack the knapsack to achieve maximum total

value of packed items?

G. Srilatha, CSE, JITS

Defining a Subproblem

• Let’s add another parameter: w, which will
represent the maximum weight for each
subset of items

• The subproblem then will be to compute
V[k,w], i.e., to find an optimal solution for Sk =
{items labeled 1, 2, .. k} in a knapsack of size w

G. Srilatha, CSE, JITS

Recursive Formula for subproblems

• The subproblem will then be to compute
V[k,w], i.e., to find an optimal solution for Sk =
{items labeled 1, 2, .. k} in a knapsack of size w

• Assuming knowing V[i, j], where i=0,1, 2, … k-1,
j=0,1,2, …w, how to derive V[k,w]?

G. Srilatha, CSE, JITS

Recursive Formula for subproblems (continued)

It means, that the best subset of Sk that has
total weight w is:

1) the best subset of Sk-1 that has total weight  w,
or

2) the best subset of Sk-1 that has total weight  w-
wk plus the item k

G. Srilatha, CSE, JITS





+−−−

−
=

else }],1[],,1[max{

 if],1[
],[

kk

k

bwwkVwkV

wwwkV
wkV

Recursive formula for subproblems:

Recursive Formula

• The best subset of Sk that has the total weight  w,
either contains item k or not.

• First case: wk>w. Item k can’t be part of the solution,
since if it was, the total weight would be > w, which is
unacceptable.

• Second case: wk  w. Then the item k can be in the
solution, and we choose the case with greater value.





+−−−

−
=

else }],1[],,1[max{

 if],1[
],[

kk

k

bwwkVwkV

wwwkV
wkV

0-1 Knapsack Algorithm
for w = 0 to W

V[0,w] = 0

for i = 1 to n

V[i,0] = 0

for i = 1 to n

for w = 0 to W

if wi <= w // item i can be part of the solution

if bi + V[i-1,w-wi] > V[i-1,w]

V[i,w] = bi + V[i-1,w- wi]

else

V[i,w] = V[i-1,w]

else V[i,w] = V[i-1,w] // wi > w

G. Srilatha, CSE, JITS

Running time
for w = 0 to W

V[0,w] = 0

for i = 1 to n

V[i,0] = 0

for i = 1 to n

for w = 0 to W

< the rest of the code >

G. Srilatha, CSE, JITS

What is the running time of this algorithm?

O(W)

O(W)

Repeat n times

O(n*W)

Remember that the brute-force algorithm

takes O(2n)

