DESIGN PATTERNS

DR. S. PRABAHARAN
ASSOCIATE PROFESSOR
DEPT. OF CSE
JYOTHISHMATHI INSTITUTE OF TECHNOLOGY AND SCIENCE

A Case Study:

Designing a Document Editor:

Design Problems:

Seven problems in Lexis's design:

Document Structure:

v" The choice of internal representation for the document affects nearly every
aspect of Lexis's design. All editing , formatting, displaying, and textual
analysis will require traversing the representatlon

Formatting:

v" How does Lexi actually arrange text and graphics into lines and columns?
v" What objects are responsible for carrying out different formatting policies?
v" How do these policies interact with the document’s internal representation?

Embellishing the user interface:

v Lexis user interface include scroll bar, borders and drop shadows that
embellish the WYSIWYG document interface. Such embellishments are
likely to change as Lexis user interface evolves.

UNIT-II 3

L1

Design Problems

Supporting multiple look-and-feel standards:
v'Lexi should adapt easily to different look-and-feel standards such as Motif and
Presentation Manager (PM) without major modification.

Supporting multiple window systems:
v'Different look-and-fell standards are usually implemented on different window system.
Lexi’s design should be independent of the window system as possible.

User Operations:

v'User control Lexi through various interfaces, including buttons and pull-down menus.
The functionality beyond these interfaces is scattered throughout the objects in the
application.

Spelling checking and hyphenation.:

v How does Lexi support analytical operations checking for misspelled words
and determining hyphenation points? How can we minimize the number of classes we
have to modify to add a new analytical operation?

UNIT-II 4

22| lexi

Application: Document Editor (Lexi)

File Edit Style Symbol

Align left

Center

Align right
Justify

¢ Roman
Boldface
Jrelic
Typewriter
Sans serif

the inteznal representation of the TextView. The draw
operation {which is not shown) simply calls draw on the

BBox

Thwe code that builds a TextView is similaz 10 the
original draw code, except that instead of clling
functions to draw the characters, we build objects
that will dzaw thernselves whenever necessary. Using
objects solwes the redraw problem because only those
objects that lie within the damaged region will get
draw calls. The progeararaey does not bave to write the
code that decides what objects to redraw- that code is
i the toolkit (i this example, in the irplemnentation
of the Box draw operation). Indeed, the glyph-based.
foplementation of TextView is even simpler than the
original code because the progrararmer need only declare
what objects he wants-he does not need o specify dow
the objects should intezact.

2.2 Multiple fonts

Because we built TextView with glyphs, we can easily
extend it to add functionality that might otherwise be
difficult to fooplement. Fo example, Figure 4 shows
a screen durap of a version of TextWiew that displays
EUC-encoded Japanese text. Adding this featuze to a2
text view suchas the Athena Text Fidget would zequire
a complete resrite. Here we only add two lines of code.
Figuze Sshows the change.

Character glyphs take an optional second constructor
pararneter that specifies the font to use when drawing
For ASCIT-encoded text we ceeate Characteys that use
the 8-bit ASCIT-encoded *“a14™ font; for JIS-encoded

@Y | et

text, (kaofif and kana chazacters) we cxeate Charac
that use the 16-bit JI8 - encoded “k14™ font.

?.? Mixing text and graphics
We can put any glyph inside 3 composite glyph; th)
it is straightforward to extend TextView to displ]
exnbedded gaphics. Figure 6, shows o screen dup
a whew that makes the whitespace characters in 3 fY
visible by drawing graphical representations of space
newlines, and forrafeeds. Figure TAihnvrs the caodifi
code that builds the wiew,

A Stencil is 2 glyph that displays 3 bitrap, an HE
draws a horizontal line, and VGlue represents vertid
blank space. The constructor parametess for Rule a

while {{c = getc(file}) != EOF) {
if o == "’y

Line = new LRBox();
+) else if (lizaseiiled) {
+ ' line->append(
new character
tojis(e, gete(file)), ki

} else
Line->append(
new charaoter(o, a14)

¥
H

Figuze 5: Modified TextView that displays Japanese te

@l

BB MRBKERZES

7 Design Problems

Document structure
Formatting
Embellishment

Multiple look & feels
Multiple window systems
User operations

Spelling checking &
hyphenation

UNIT-II

L1

Document Structure

Goals:
— present document’s visual aspects
— drawing, hit detection, alignment

— support physical structure
(e.g., lines, columns)

Constraints/forces:
— treat text & graphics uniformly
— no distinction between one & many

UNIT-II

L1

Document Structure

* The Iinternal representation for a document

* The Iinternal representation should support
— maintaining the document’s physical structure
— generating and presenting the document visually

— mapping positions on the display to elements In
the internal representations

UNIT-II 7

L1

Document Structure (cont.)

e Some constraints
— we should treat text and graphics uniformly

— our implementation shouldn’t have to distinguish
between single elements and groups of elements
In the internal representation

« Recursive Composition

— a common way to represent hierarchically
structured information

UNIT-II 8

L1

characters space image composite (row)

£ S

composite (column)

Figure 2.2: Recursive composition of text and graphics

'(_:omposite '
{(column)
composite Y X B
(row) .

composite
(row)

Figure 2.3: Object structure for recursive comprosition of text and graphics

UNIT-II

L1

Document Structure (cont.)

* Glyphs

— an abstract class for all objects that can
appear in a document structure

— three basic responsibilities, they know

* how to draw themselves, what space they
occupy, and their children and parent

« Composite Pattern

— captures the essence of recursive
composition in object-oriented terms

UNIT-II

10

L1

Glyph

Draw(Window)
Intersects(Point)
Insert(Glyph, int)

T

L1

Character

Draw(Window w) ©O- -
Intersects(Point p)

char ¢

---4---t-0

return true if point p |
intersects this character

e L e o Em am A dm Em Em mm me wm a

w~>DrawCharacte r(cw

Rectangle

Draw(...)
Intersects(...)

Row

Draw(Window w) O-----=---H---ou_-_-
Intersects(Pointp) O------1 .

Polygon

Draw(...)
Intersects(...)

Insert(Glyph g, int i) Q
]

insert g into
children at position |

children

for all ¢ in children
if c—>Intersects(p) return true

correctly;
c—>Draw(w)

forall ¢ in children _
ensure ¢ is positioned

A sy mm o o A ke mm e Em e o o mr o mA m wm am o e o

Figure 2.4: Partial Glyph class hierarchy

L1

Responsibility

| Operations
appearance | virtual void Draw (Window*)
virtual void Bounds (Rect&) |
hit detection | virtual bool Intersects(const Point&)
structure | virtual void Insert (Glyph*, int)
virtual void Remove (Glyph*) | |
virtual Glyph* Child(int)
virtual Glyph

* Parent()

Table 2.1: Basic glyph interface

UNIT-II 12

Formatting

« A structure that corresponds to a properly
formatted document
* Representation and formatting are distinct

— the ability to capture the document’s physical
structure doesn't tell us how to arrive at a
particular structure

* here, we'll restrict “formatting” to mean
breaking a collection of glyphs in to lines

UNIT-II

13

L2

Formatting (cont.)

* Encapsulating the formatting algorithm

— keep formatting algorithms completely
Independent of the document structure

— make It Is easy to change the formatting
algorithm

— WEe'll define a separate class hierarchy for
objects that encapsulate formatting
algorithms

UNIT-II 14

L2

Formatting (cont.)

« Compositor and Composition

— We’'ll define a Compositor class for objects that can
encapsulate a formatting algorithm

— The glyphs Compositor formats are the children of a
special Glyph subclass called Composition

— When the composition needs formatting, it calls its
compositor's Compose operation

— Each Compositor subclass can implement a different
line breaking algorithm

UNIT-II

15

L2

L2

ResponSibility | | Operations

what to format | void SethmpOsition(Compoéition*)

when to format | virtual void Compose ()

Table 2.2: Basic compositor interface

UNIT-II 16

L2

Formatting (cont.)

« Compositor and Composition (cont.)

— The Compositor-Composition class split ensures a
strong separation between code that supports the
document’s physical structure and the code for
different formatting algorithms

e Strategy pattern
— Intent: encapsulating an algorithm in an object

— Compositors are strategies. A composition Is the
context for a compositor strategy

UNIT-II 17

L2

-—'—bJ G[yph .
' Insert(Glyph, int) |

2

children - compositor Compositor
—<> Composition <> : - Composay
Ihsert(G!yph g, inti) Q[compoéitior‘x SetCompqsition()
Glyphuinsert(g,) | 1 e |
.composator.Conqulse() ArrayCompositor TexCompositor SimpleCompositor
_Compose'() | | compose)y | | Compose(

Figure 2.5: Composition and Compositor class relationships

UNIT-II 18

composition

compositor

Figure 2.6: Object structure reflecting compositor-directed linebreaking

UNIT-II 19

L2

Embellishing the User
Interface

« Considering adds a border around the text
editing area and scrollbars that let the user
view the different parts of the page here

* Transparent Enclosure

— Inheritance-based approach will result in some
problems

« Composition, ScollableComposition,
BorderedScrollableComposition, ...

— object composition offers a potentially more workable

and flexible extension mechanism
UNIT-II 20

L3

Embellishing the User
Interface (cont.)

* Transparent enclosure (cont.)

— object composition (cont.)

 Border and Scroller should be a subclass of
Glyph

— two notions
« single-child (single-component) composition
e compatible interfaces

UNIT-II

21

L3

L3

Embellishing the User
Interface (cont.)

* Monoglyph
— We can apply the concept of transparent enclosure to
all glyphs that embellish other glyphs

— the class, Monoglyph
 Decorator Pattern

= Captures class and void I\/IonoGIyph::DraW(WindOW* W) {
object relationships _component-> Draw(w);
that support }

void Border:: Draw(Window * w) {
MonoGlyph::Draw(w);
DrawBorder(w);

embellishment by
transparent enclosure

}

Glyph

Draw(Window)

A

<> MonoGlyph

component
Draw(Window)
Border Scroller
Draw(Window) | Draw(Window)

DrawBorder(Window)
-

Figure 2.7: MonoGlyph class relationships |

‘@

UNIT-II

23

L3

border

scroller

i W%

{i:m g:;a} %iwv

q,,w

Figure 2.8: Embellished object structure

UNIT-II

24

Supporting Multiple Look-and-
Feel Standards

« Design to support the look-and-feel changing at
run-time

* Abstracting Object Creation
— widgets

— two sets of widget glyph classes for this purpose

« a set of abstract glyph subclasses for each category of
widget glyph (e.g., ScrollBar)

 a set of concrete subclasses for each abstract subclass that
Implement different look-and-feel standards (e.g.,
MotifScrollBar and PMScrollBar)

UNIT-II 25

Supporting Multiple Look-and-
Feel Standards (cont.)

» Abstracting Object Creation (cont.)

— Lexi needs a way to determine the look-
and-feel standard being targeted

— We must avoid making explicit constructor
calls

— We must also be able to replace an entire
widget set easily

— We can achieve both by abstracting the
process of object creation

UNIT-II 26

Supporting Multiple Look-and-
Feel Standards (cont.)

* Factories and Product Classes
— Factories create product objects
— The example

* Abstract Factory Pattern

— capture how to create families of related
product objects without instantiating
classes directly

UNIT-II 2l

L4

GUIFactory

CreateScrollBar()
CreateButton()
CreateMenu()

X

MotifFactory | PM Factory _ 1 MacFactory

CreateScrollBar() ©-f------ 1 CreateScroHBar'() O-f-=-ww= CreateScroliBar() ©O-f------1
CreateButton() O-r--- CreateButton() O~~~ | CreateButton() O-r---1
CreateMenu() o CreateMenu() o-r CreateMenu{) - ©O-f

[

i
1
1
1
1
1
1
L]

return new MotiftMenu

return new PMMenu return new MacMenu

il - e e o - - -

£ :
= W YR R O ER B W e AR TR TR R e

I return new PMButton

return new MotifButton return new MacButton

;[R I I]
- e mm mm mm o e W W M R Em mm o A W W R M

return new MotifScrollBar

return new PMScroliBar - return new MacScroliBar

Figure 2.9: GUIFactory class hierarchy

UNIT-II 28

L4

Glyph
N
ScroilBar Button Menu
ScroliTo(int) Press() Popup()
N AN N VAN
MotitScrollBar MacScrollBar MotifButton MacButton MotifMenu MacMenu
ScroliTo(int) ScroliTo(int) 1 Press() Press() Popup() _Popup()
PMScrollBar PMButton PMMenu
ScroliTo(int) Press() Popup()
Figure 2.10: Abstract product classes and concrete subclasses
UNIT-II 29

Supporting Multiple Window s
Systems

« We'd like Lexi to run on many existing window
systems having different programming interfaces

« Can we use an Abstract Factory?

— As the different programming interfaces on these existing
window systems, the Abstract Factory pattern doesn‘t work

— We need a uniform set of windowing abstractions that lets
us take different window system impelementations and
slide any one of them under a common interface

UNIT-II 30

Supporting Multiple Window
Systems (cont.)

« Encapsulating Implementation Dependencies

— The Window class interface encapsulates the things
windows tend to do across window systems

— The Window class Is an abstract class
— Where does the implementation live?

* Window and WindowImp

* Bridge Pattern

— to allow separate class hierarchies to work together
even as they evolve independently

UNIT-II

31

LS

Responsibility

Operations

window management

virtual
virtual
virtual
virtual
virtual

void Redraw()-
vold Raisel()
void Lower ()

void Iconify ()
void Deiconify ()

graphics

virtual
virtual
virtual
virtual

void DrawLine(...)
void DrawRect (...)
void DrawPolygon{(...)
void DrawText (...)

Table 2.3:

Window class interface

UNIT-II

LS

Glyph st

glyph

Draw(Window)

Window

| Redraw(} O--

| DrawLine()

lconify()
Lower()

A

LS

________ glyph—>Draw(this)

ApplicationWindow

lconWindow

lconify()

UNIT-II

owner

DialogWindow

Lower() @

= = ot -

owner—>Lower()

33

-

Window
' imp
Raise() K>
DrawRect(...)
ApplicationWindow | DialogWindow |
iconWindow

Windowimp

DeviceRaise()
- DeviceRect(...)

AN

MacWindowlmp

PMWindowlimp

XWindowimp

| DeviceRaise()

DeviceRect(...)

DeviceRaise()
DeviceRect(...)

DeviceRaise()
DeviceRect(...)

UNIT-II

34

L6

User Operations

* Requirements

— Lexi provides different user interfaces for the
operations it supported

— These operations are implemented in many
different classes

— Lexi supports undo and redo

* The challenge is to come up with a simple
and extensible mechanism that satisfies all of

these needs

UNIT-II 35

L6

User Operations (cont.)

« Encapsulating a Request

— We could parameterize Menultem with a function
to call, but that's not a complete solution
* it doesn’t address the undo/redo problem
« it's hard to associate state with a function
 functions are hard to extent, and it's hard to reuse part of
them
— We should parameterize Menultems with an
object, not a function

UNIT-II 36

L6

User Operations (cont.)

e Command Class and Subclasses

— The Command abstract class consists of a
single abstract operation called "Execute”

— Menultem can store a Command object
that encapsulates a request

— When a user choose a particular menu
item, the Menultem simply calls Execute
on its Command object to carry out the
request

UNIT-II 37

Command

Execute()

A

- o we .

PasteCommand

Execute() @

buffer

e = o - - -

paste buffer
into document

FOntCOmmand

SaveCommand

-

save

L6

Execute() @

Execute() 9

newFont

I [

make sefected
text appear in
newkont

pop up a dialog

box that lets the

user name the

document, and
then save the
document under
that name

Qu itcommand

Execute() @

if (document is modified) {

save~->Execute()

quit the application

Figure 2.11: Partial Command class hierarchy

UNIT-II

38

Glyph
Menuitem Ccommand » Command
Execute()

Clicked() ¢

command—:-Execute();%

Figure 2.12: MenuItém-Command rel'atio'nship N

UNIT-II

Frren Y

-

39

L6

User Operations (cont.)

« Undoability

— To undo and redo commands, we add an
Unexecute operation to Command’s interface

— A concrete Command would store the state of
the Command for Unexecute

— Reversible operation returns a Boolean value
to determine if a command is undoable

« Command History
— a list of commands that have been executed

UNIT-II 40

L6

Implementing a Command
History

< past commands
present

 The command history can be seen as a list of
past commands commands

* As new commands are executed they are
added to the front of the history

UNIT-II

41

L6

Undoing the Last Command

unexecute()

o000

present

* To undo a command, unexecute() Is called on
the command on the front of the list

* The “present” position is moved past the last
command

UNIT-II 42

L6

L6

Undoing the Previous
Command
Pt

o000

present

* To undo the previous command, unexecute()
IS called on the next command in the history

* The present pointer is moved to point before
that command

UNIT-II 43

L6

Redoing the Next Command

execute()

o000

present

* To redo the command that was just undone,
execute() is called on that command

* The present pointer is moved up past that
command

UNIT-II 44

The Command Pattern

Encapsulate a request as an object

he Command Patterns lets you

— parameterize clients with different requests
— gueue or log requests

— support undoable operations

Also Known As: Action, Transaction
Covered on pg. 233 In the book

UNIT-II

45

L6

Spelling Checking & Hyphenation

Goals:
— analyze text for spelling errors
— Introduce potential hyphenation sites

Constraints/forces:
— support multiple algorithms

— don’t tightly couple algorithms with
document structure

UNIT-II 46

L7

B7
Spelling Checking & Hyphenation (cont'd)

Solution: Encapsulate Traversal

lterator

— encapsulates a
traversal algorithm
without exposing
representation
detalls to callers

— uses Glyph’s child
enumeration
operation

— This Is an example
of a “preorder
iterator”

iterator
o

UNIT-II a7

L7

Spelling Checking & Hyphenation (cont'd)

TERATOR object behavioral
Intent
access elements of a container without exposing its representation
Applicability

— require multiple traversal algorithms over a container
— require a uniform traversal interface over different containers
— when container classes & traversal algorithm must vary

iIndependently
St r u Ct u re Aggregate (Glyph) Iterator
createlterator() first()
next()
isDone()
Z& currerj’:m()

ConcreteAggregate

Concretelterator

createlterator() @

UNIT-II 48

return new Concretelterator(this)

L7

Spelling Checking & Hyphenation (cont'd)
TERATOR (cont'd) object behavioral

Iterators are used heavily in the C++ Standard
Template Library (STL)

int main (int argc, char *argv[]) {
vector<string> args;
for (int 1 = @; 1 < argc; i++)
args.push_back (string (argv[i]));
for (vector<string>::iterator i (args.begin ());
i = args.end ();
i++)
t << *i; !
S S The same iterator pattern can be
return 0; applied to any STL container!

}
for (Glyph::iterator 1 = glyphs.begin ();
i != glyphs.end ();

i++)
UNIT-II 49

Spelling Checking & Hyphenation (cont'd)
TERATOR (cont'd) object behavioral

Conseqguences
+ flexibility: aggregate & traversal are independent
+ multiple iterators & multiple traversal algorithms
— additional communication overhead between iterator & aggregate

Implementation
— internal versus external iterators
— violating the object structure’s encapsulation
— robust iterators
— synchronization overhead in multi-threaded programs
— batching in distributed & concurrent programs

Known Uses

— C++ STL iterators

— JDK Enumeration, Iterator

. UNIT-II
— Unidraw lterator

50

L7

Spelling Checking & Hyphenation (cont'd)
Visitor

« defines action(s) at each step of traversal
 avoids wiring action(s) into Glyphs
* iterator calls glyph’s accept(Visitor) at each node

e accept() calls back on visitor (a form of “static
polymorphism” based on method overloading by type)

void Character::accept (Visitor &v) { v.visit (*this); }

class Visitor {
public:
virtual void visit (Character &);
virtual void visit (Rectangle &);
virtual void visit (Row &);
// etc. for all relevant Glyph subclasses

}s UNIT-II 51

L7

Spelling Checking & Hyphenation (cont'd) L7

SpellingCheckerVisitor

» gets character code from each character glyph

Can define getCharCode () operation just on
Character() class

« checks words accumulated from character glyphs
« combine with Preorderlterator

class SpellCheckerVisitor : public Visitor {
public:
virtual void visit (Character &);
virtual void visit (Rectangle &);
virtual void visit (Row &);
// etc. for all relevant Glyph subclasses
Private:
std::string accumulator_;
s UNIT-II 52

L7

Spelling Checking & Hyphenation (cont'd)
Accumulating Words

iterator

UNIT-II

Spelling check
performed when a
nonalphabetic
character it reached

53

Spelling Checking & Hyphenation (cont'd)

Interaction Diagram

* The iterator controls the order in which accept() is called on each

glyph in the composition
« accept() then “visits” the glyph to perform the desired action

« The Visitor can be sub-classed to implement various desired actions

aCharacter ("a")

accept(aSpellingChecker)

accept(aSpellingChecker)

visit(this)

anotherCharacter ("_")

aSpellingChecker

-

getCharCode()

J

i

| visit(this)

=

-

getCharCode()

T
UNIT-II

checks
completea
word

54

L7

Spelling Checking & Hyphenation (cont'd)
HyphenationVisitor

« gets character code from each character glyph
« examines words accumulated from character glyphs

 at potential hyphenation point, inserts a...

class HyphenationVisitor : public Visitor {
public:

void visit (Character &);

void visit (Rectangle &);

void visit (Row &);

// etc. for all relevant Glyph subclasses
}s

UNIT-II

55

L7

Spelling Checking & Hyphenation (cont'd)

Discretionary Glyph

» looks like a hyphen when at end of a line
* has no appearance otherwise

« Compositor considers its presence when determining
linebreaks

Ilall IIIII IIIII Iloll Ilyll

B el
_____________ 4 [|l

UNIT-II 1oy 1 56

L7

B7
Spelling Checking & Hyphenation (cont'd)
VISITOR object behavioral

Intent
centralize operations on an object structure so that they can
vary independently but still behave polymorphically
Applicability
— when classes define many unrelated operations

— class relationships of objects in the structure rarely change,
but the operations on them change often

— algorithms keep state that's updated during traversal

Structure

ObjectStructure W

accept(Visitor)

Visitor J\

visitConcreteElement1(ConcreteElement1)
visitConcreteElement2(ConcreteElement2) | |

ConcreteElement1 ConcreteElement2
accept(Visitorv) @ accept(Visitorv) @
]]
ConcreteVisitor
visitConcreteElement1(ConcreteElement1) U v.visitConcreteElement1(this) N v.visitConcreteElement2(this) N o7
visitConcreteElement2(ConcreteElement2)

Spelling Checking & Hyphenation (cont'd) L7
VISITOR (cont’d) object behavioral

SpellCheckerVisitor spell check_visitor;

for (Glyph::iterator i = glyphs.begin ();
i = glyphs.end ();
i++) {
(*i)->accept (spell check visitor);

}

HyphenationVisitor hyphenation_visitor;

for (Glyph::iterator i = glyphs.begin ();
i != glyphs.end ();
i++) {
(*i)->accept (hyphenation_visitor);

UNIT-II 58

Spelling Checking & Hyphenation (cont'd)

VISITOR (cont’d) object behavioral
Consequences
+ flexibility: visitor & object structure are independent

+

localized functionality
circular dependency between Visitor & Element interfaces

Visitor brittle to new ConcreteElement classes

Implementation

double dispatch
general interface to elements of object structure

Known Uses

ProgramNodeEnumerator in Smalltalk-80 compiler
IRIS Inventor scene rendering
TAO IDL compiler to hape|e different backends

L8

59

Part Ill: Wrap-Up
Concluding Remarks

design reuse
uniform design vocabulary

understanding, restructuring, & team
communication

provides the basis for automation
a "‘new” way to think about design

UNIT-II

60

L8

Pattern References i

Books
Timeless Way of Building, Alexander, ISBN 0-19-502402-8
A Pattern Language, Alexander, 0-19-501-919-9

Design Patterns, Gamma, et al., 0-201-63361-2 CD version 0-201-63498-
8

Pattern-Oriented Software Architecture, Vol. 1, Buschmann, et al.,
0-471-95869-7

Pattern-Oriented Software Architecture, Vol. 2, Schmidt, et al.,
0-471-60695-2

Pattern-Oriented Software Architecture, Vol. 3, Jain & Kircher,
0-470-84525-2

Pattern-Oriented Software Architecture, Vol. 4, Buschmann, et al.,
0-470-05902-8

Pattern-Oriented Software Architecture, Vol. 5, Buschmann, et al.,

0-471-48648-5 s =

