
DESIGN PATTERNS

DR. S. PRABAHARAN

ASSOCIATE PROFESSOR

DEPT. OF CSE

JYOTHISHMATHI INSTITUTE OF TECHNOLOGY AND SCIENCE

2

A Case Study:

Designing a Document Editor:

UNIT-II 3

Design Problems:
Seven problems in Lexis's design:

 Document Structure:

 The choice of internal representation for the document affects nearly every
aspect of Lexis's design. All editing , formatting, displaying, and textual
analysis will require traversing the representation.

 Formatting:

 How does Lexi actually arrange text and graphics into lines and columns?

 What objects are responsible for carrying out different formatting policies?

 How do these policies interact with the document’s internal representation?

Embellishing the user interface:

 Lexis user interface include scroll bar, borders and drop shadows that
embellish the WYSIWYG document interface. Such embellishments are
likely to change as Lexis user interface evolves.

UNIT-II 4

Design Problems

Supporting multiple look-and-feel standards:

Lexi should adapt easily to different look-and-feel standards such as Motif and

Presentation Manager (PM) without major modification.

Supporting multiple window systems:

Different look-and-fell standards are usually implemented on different window system.

Lexi’s design should be independent of the window system as possible.

User Operations:

User control Lexi through various interfaces, including buttons and pull-down menus.

The functionality beyond these interfaces is scattered throughout the objects in the

application.

Spelling checking and hyphenation.:

 How does Lexi support analytical operations checking for misspelled words

and determining hyphenation points? How can we minimize the number of classes we

have to modify to add a new analytical operation?

L1

UNIT-II 5

Application: Document Editor (Lexi)

7 Design Problems

1. Document structure

2. Formatting

3. Embellishment

4. Multiple look & feels

5. Multiple window systems

6. User operations

7. Spelling checking &

hyphenation

L1

UNIT-II 6

Document Structure

Goals:

– present document’s visual aspects

– drawing, hit detection, alignment

– support physical structure
(e.g., lines, columns)

Constraints/forces:

– treat text & graphics uniformly

– no distinction between one & many

L1

UNIT-II 7

Document Structure

• The internal representation for a document

• The internal representation should support

– maintaining the document’s physical structure

– generating and presenting the document visually

– mapping positions on the display to elements in

the internal representations

L1

UNIT-II 8

Document Structure (cont.)

• Some constraints

– we should treat text and graphics uniformly

– our implementation shouldn’t have to distinguish

between single elements and groups of elements

in the internal representation

• Recursive Composition

– a common way to represent hierarchically

structured information

L1

UNIT-II 9

L1

UNIT-II 10

Document Structure (cont.)

• Glyphs

– an abstract class for all objects that can
appear in a document structure

– three basic responsibilities, they know
• how to draw themselves, what space they

occupy, and their children and parent

• Composite Pattern

– captures the essence of recursive
composition in object-oriented terms

L1

UNIT-II 11

L1

UNIT-II 12

L1

UNIT-II 13

Formatting

• A structure that corresponds to a properly

formatted document

• Representation and formatting are distinct

– the ability to capture the document’s physical

structure doesn’t tell us how to arrive at a

particular structure

• here, we’ll restrict “formatting” to mean

breaking a collection of glyphs in to lines

L2

UNIT-II 14

Formatting (cont.)

• Encapsulating the formatting algorithm

– keep formatting algorithms completely

independent of the document structure

– make it is easy to change the formatting

algorithm

– We’ll define a separate class hierarchy for

objects that encapsulate formatting

algorithms

L2

UNIT-II 15

Formatting (cont.)

• Compositor and Composition

– We’ll define a Compositor class for objects that can

encapsulate a formatting algorithm

– The glyphs Compositor formats are the children of a

special Glyph subclass called Composition

– When the composition needs formatting, it calls its

compositor’s Compose operation

– Each Compositor subclass can implement a different

line breaking algorithm

L2

UNIT-II 16

L2

UNIT-II 17

Formatting (cont.)

• Compositor and Composition (cont.)

– The Compositor-Composition class split ensures a

strong separation between code that supports the

document’s physical structure and the code for

different formatting algorithms

• Strategy pattern

– intent: encapsulating an algorithm in an object

– Compositors are strategies. A composition is the

context for a compositor strategy

L2

UNIT-II 18

L2

UNIT-II 19

L2

UNIT-II 20

Embellishing the User

Interface

• Considering adds a border around the text

editing area and scrollbars that let the user

view the different parts of the page here

• Transparent Enclosure

– inheritance-based approach will result in some

problems

• Composition, ScollableComposition,

BorderedScrollableComposition, …

– object composition offers a potentially more workable

and flexible extension mechanism

L3

UNIT-II 21

Embellishing the User

Interface (cont.)

• Transparent enclosure (cont.)

– object composition (cont.)

• Border and Scroller should be a subclass of

Glyph

– two notions

• single-child (single-component) composition

• compatible interfaces

L3

UNIT-II 22

Embellishing the User

Interface (cont.)

• Monoglyph
– We can apply the concept of transparent enclosure to

all glyphs that embellish other glyphs

– the class, Monoglyph

• Decorator Pattern
– captures class and

 object relationships

 that support

 embellishment by

 transparent enclosure

void MonoGlyph::Draw(Window* w) {

 _component-> Draw(w);

}

void Border:: Draw(Window * w) {

 MonoGlyph::Draw(w);

 DrawBorder(w);

}

L3

UNIT-II 23

L3

UNIT-II 24

L3

UNIT-II 25

Supporting Multiple Look-and-

Feel Standards

• Design to support the look-and-feel changing at

run-time

• Abstracting Object Creation

– widgets

– two sets of widget glyph classes for this purpose

• a set of abstract glyph subclasses for each category of

widget glyph (e.g., ScrollBar)

• a set of concrete subclasses for each abstract subclass that

implement different look-and-feel standards (e.g.,

MotifScrollBar and PMScrollBar)

L4

UNIT-II 26

Supporting Multiple Look-and-

Feel Standards (cont.)

• Abstracting Object Creation (cont.)

– Lexi needs a way to determine the look-
and-feel standard being targeted

– We must avoid making explicit constructor
calls

– We must also be able to replace an entire
widget set easily

– We can achieve both by abstracting the
process of object creation

L4

UNIT-II 27

Supporting Multiple Look-and-

Feel Standards (cont.)

• Factories and Product Classes

– Factories create product objects

– The example

• Abstract Factory Pattern

– capture how to create families of related

product objects without instantiating

classes directly

L4

UNIT-II 28

L4

UNIT-II 29

L4

UNIT-II 30

Supporting Multiple Window

Systems

• We’d like Lexi to run on many existing window

systems having different programming interfaces

• Can we use an Abstract Factory?

– As the different programming interfaces on these existing

window systems, the Abstract Factory pattern doesn‘t work

– We need a uniform set of windowing abstractions that lets

us take different window system impelementations and

slide any one of them under a common interface

L5

UNIT-II 31

Supporting Multiple Window

Systems (cont.)

• Encapsulating Implementation Dependencies

– The Window class interface encapsulates the things

windows tend to do across window systems

– The Window class is an abstract class

– Where does the implementation live?

• Window and WindowImp

• Bridge Pattern

– to allow separate class hierarchies to work together

even as they evolve independently

L5

UNIT-II 32

L5

UNIT-II 33

L5

UNIT-II 34

L5

UNIT-II 35

User Operations

• Requirements

– Lexi provides different user interfaces for the

operations it supported

– These operations are implemented in many

different classes

– Lexi supports undo and redo

• The challenge is to come up with a simple

and extensible mechanism that satisfies all of

these needs

L6

UNIT-II 36

User Operations (cont.)

• Encapsulating a Request

– We could parameterize MenuItem with a function

to call, but that’s not a complete solution

• it doesn’t address the undo/redo problem

• it’s hard to associate state with a function

• functions are hard to extent, and it’s hard to reuse part of

them

– We should parameterize MenuItems with an

object, not a function

L6

UNIT-II 37

User Operations (cont.)

• Command Class and Subclasses

– The Command abstract class consists of a
single abstract operation called “Execute”

– MenuItem can store a Command object
that encapsulates a request

– When a user choose a particular menu
item, the MenuItem simply calls Execute
on its Command object to carry out the
request

L6

UNIT-II 38

L6

UNIT-II 39

L6

UNIT-II 40

User Operations (cont.)

• Undoability

– To undo and redo commands, we add an
Unexecute operation to Command’s interface

– A concrete Command would store the state of
the Command for Unexecute

– Reversible operation returns a Boolean value
to determine if a command is undoable

• Command History

– a list of commands that have been executed

L6

UNIT-II 41

Implementing a Command

History

• The command history can be seen as a list of

past commands commands

• As new commands are executed they are

added to the front of the history

present
past commands

L6

UNIT-II 42

Undoing the Last Command

• To undo a command, unexecute() is called on

the command on the front of the list

• The “present” position is moved past the last

command

present

unexecute()

present

L6

UNIT-II 43

Undoing the Previous

Command

• To undo the previous command, unexecute()

is called on the next command in the history

• The present pointer is moved to point before

that command

present

unexecute()

present

L6

UNIT-II 44

Redoing the Next Command

• To redo the command that was just undone,

execute() is called on that command

• The present pointer is moved up past that

command

present

execute()

present

L6

UNIT-II 45

The Command Pattern

• Encapsulate a request as an object

• The Command Patterns lets you

– parameterize clients with different requests

– queue or log requests

– support undoable operations

• Also Known As: Action, Transaction

• Covered on pg. 233 in the book

L6

UNIT-II 46

Spelling Checking & Hyphenation

Goals:

– analyze text for spelling errors

– introduce potential hyphenation sites

Constraints/forces:

– support multiple algorithms

– don’t tightly couple algorithms with

document structure

L7

UNIT-II 47

Spelling Checking & Hyphenation (cont’d)

Solution: Encapsulate Traversal

Iterator
– encapsulates a

traversal algorithm
without exposing
representation
details to callers

– uses Glyph’s child
enumeration
operation

– This is an example
of a “preorder
iterator”

L7

UNIT-II 48

Spelling Checking & Hyphenation (cont’d)

TERATOR object behavioral

Intent

access elements of a container without exposing its representation

Applicability

– require multiple traversal algorithms over a container

– require a uniform traversal interface over different containers

– when container classes & traversal algorithm must vary

independently

Structure

L7

UNIT-II 49

Spelling Checking & Hyphenation (cont’d)

TERATOR (cont’d) object behavioral

int main (int argc, char *argv[]) {
 vector<string> args;
 for (int i = 0; i < argc; i++)
 args.push_back (string (argv[i]));
 for (vector<string>::iterator i (args.begin ());
 i != args.end ();
 i++)
 cout << *i;
 cout << endl;
 return 0;
}

Iterators are used heavily in the C++ Standard
Template Library (STL)

The same iterator pattern can be
applied to any STL container!

for (Glyph::iterator i = glyphs.begin ();
 i != glyphs.end ();
 i++)
 ...

L7

UNIT-II 50

Spelling Checking & Hyphenation (cont’d)

TERATOR (cont’d) object behavioral

Consequences

+ flexibility: aggregate & traversal are independent

+ multiple iterators & multiple traversal algorithms

– additional communication overhead between iterator & aggregate

Implementation

– internal versus external iterators

– violating the object structure’s encapsulation

– robust iterators

– synchronization overhead in multi-threaded programs

– batching in distributed & concurrent programs

Known Uses

– C++ STL iterators

– JDK Enumeration, Iterator

– Unidraw Iterator

L7

UNIT-II 51

Spelling Checking & Hyphenation (cont’d)

Visitor

• defines action(s) at each step of traversal

• avoids wiring action(s) into Glyphs

• iterator calls glyph’s accept(Visitor) at each node

• accept() calls back on visitor (a form of “static

polymorphism” based on method overloading by type)

void Character::accept (Visitor &v) { v.visit (*this); }

class Visitor {
public:
 virtual void visit (Character &);
 virtual void visit (Rectangle &);
 virtual void visit (Row &);
 // etc. for all relevant Glyph subclasses
};

L7

UNIT-II 52

Spelling Checking & Hyphenation (cont’d)

SpellingCheckerVisitor

• gets character code from each character glyph

Can define getCharCode() operation just on

Character() class

• checks words accumulated from character glyphs

• combine with PreorderIterator

class SpellCheckerVisitor : public Visitor {

public:

 virtual void visit (Character &);

 virtual void visit (Rectangle &);

 virtual void visit (Row &);

 // etc. for all relevant Glyph subclasses

Private:

 std::string accumulator_;

};

L7

UNIT-II 53

Spelling Checking & Hyphenation (cont’d)

Accumulating Words

Spelling check

performed when a

nonalphabetic

character it reached

L7

UNIT-II 54

Spelling Checking & Hyphenation (cont’d)

Interaction Diagram
• The iterator controls the order in which accept() is called on each

glyph in the composition

• accept() then “visits” the glyph to perform the desired action

• The Visitor can be sub-classed to implement various desired actions

L7

UNIT-II 55

Spelling Checking & Hyphenation (cont’d)

HyphenationVisitor

• gets character code from each character glyph

• examines words accumulated from character glyphs

• at potential hyphenation point, inserts a...

class HyphenationVisitor : public Visitor {

public:

 void visit (Character &);

 void visit (Rectangle &);

 void visit (Row &);

 // etc. for all relevant Glyph subclasses

};

L7

UNIT-II 56

Spelling Checking & Hyphenation (cont’d)

Discretionary Glyph

• looks like a hyphen when at end of a line

• has no appearance otherwise

• Compositor considers its presence when determining

linebreaks

L7

UNIT-II 57

Spelling Checking & Hyphenation (cont’d)

VISITOR object behavioral

Intent
centralize operations on an object structure so that they can

vary independently but still behave polymorphically

Applicability
– when classes define many unrelated operations

– class relationships of objects in the structure rarely change,
but the operations on them change often

– algorithms keep state that’s updated during traversal

Structure

L7

UNIT-II 58

Spelling Checking & Hyphenation (cont’d)

VISITOR (cont’d) object behavioral

SpellCheckerVisitor spell_check_visitor;

for (Glyph::iterator i = glyphs.begin ();
 i != glyphs.end ();
 i++) {
 (*i)->accept (spell_check_visitor);
}

HyphenationVisitor hyphenation_visitor;

for (Glyph::iterator i = glyphs.begin ();

 i != glyphs.end ();

 i++) {

 (*i)->accept (hyphenation_visitor);

}

L7

UNIT-II 59

Spelling Checking & Hyphenation (cont’d)

VISITOR (cont’d) object behavioral

Consequences
+ flexibility: visitor & object structure are independent

+ localized functionality

– circular dependency between Visitor & Element interfaces

– Visitor brittle to new ConcreteElement classes

Implementation
– double dispatch

– general interface to elements of object structure

Known Uses
– ProgramNodeEnumerator in Smalltalk-80 compiler

– IRIS Inventor scene rendering

– TAO IDL compiler to handle different backends

L8

UNIT-II 60

Part III: Wrap-Up

Concluding Remarks

• design reuse

• uniform design vocabulary

• understanding, restructuring, & team

communication

• provides the basis for automation

• a “new” way to think about design

L8

UNIT-II 61

Pattern References
Books

Timeless Way of Building, Alexander, ISBN 0-19-502402-8

A Pattern Language, Alexander, 0-19-501-919-9

Design Patterns, Gamma, et al., 0-201-63361-2 CD version 0-201-63498-

8

Pattern-Oriented Software Architecture, Vol. 1, Buschmann, et al.,

0-471-95869-7

Pattern-Oriented Software Architecture, Vol. 2, Schmidt, et al.,

0-471-60695-2

Pattern-Oriented Software Architecture, Vol. 3, Jain & Kircher,

0-470-84525-2

Pattern-Oriented Software Architecture, Vol. 4, Buschmann, et al.,

0-470-05902-8

Pattern-Oriented Software Architecture, Vol. 5, Buschmann, et al.,

0-471-48648-5

L8

