JYOTHISHMATHI INSTITUTE OF TECHNOLOGY AND SCIENCE,
 NUSTULAPUR, KARRIMNAGAR-27

CONIC SECTIONS

Prepared by
K. Mahesh

Asst. proff
Dept: mechanical

CONIC SECTIONS

ELLIPSE, PARABOLA AND HYPERBOLA ARE CALLED CONIC SECTIONS BECAUSE

THESE CURVES APPEAR ON THE SURFACE OF A CONE WHEN IT IS CUT BY SOME TYPICAL CUTTING PLANES.

Section Plane Through Generators

Problem :-

ELLIPSE
Draw ellipse by concentric circle method.
Take major axis 100 mm and minor axis 70 mm long.

Steps:

1. Draw both axes as perpendicular bisectors of each other \& name their ends as shown.
2. Taking their intersecting point as a center, draw two concentric circles considering both as respective diameters.
3. Divide both circles in 12 equal parts \& name as shown.
4. From all points of outer circle draw vertical lines downwards and upwards respectively.
5.From all points of inner circle draw horizontal lines to intersect those vertical lines.
5. Mark all intersecting points properly as those are the points on ellipse.
6. Join all these points along with the ends of both axes in smooth possible curve. It is required ellipse.

Steps:

1 Draw a rectangle taking major and minor axes as sides.
2. In this rectangle draw both axes as perpendicular bisectors of each other..
3. For construction, select upper left part of rectangle. Divide vertical small side and horizontal long side into same number of equal parts.(here divided in four parts)
4. Name those as shown..
5. Now join all vertical points $1,2,3,4$, to the upper end of minor axis. And all horizontal points i.e. $1,2,3,4$ to the lower end of minor axis.
6. Then extend C-1 line upto D-1 and mark that point. Similarly extend C-2, C-3, C-4 lines up to D-2, D-3, \& D-4 lines.
7. Mark all these points properly and join all along with ends A and D in smooth possible curve. Do similar construction in right side part.along with lower half of the rectangle.Join all points in smooth curve.
It is required ellipse.

ELLIPSE

Problem :-
 Draw ellipse by Rectangle method. Take major axis 100 mm and minor axis 70 mm long.

PROBLEM : A BALL THROWN IN AIR ATTAINS 100 M HIEGHT AND COVERS HORIZONTAL DISTANCE 150 M ON GROUND.
Draw the path of the ball (projectile)-

PARABOLA

RECTANGLE METHOD

STEPS:

1.Draw rectangle of above size and divide it in two equal vertical parts 2. Consider left part for construction. Divide height and length in equal number of parts and name those $1,2,3,4,5 \& 6$
3.Join vertical $1,2,3,4,5 \& 6$ to the top center of rectangle
4.Similarly draw upward vertical lines from horizontal1, 2,3,4,5 And wherever these lines intersect previously drawn inclined lines in sequence Mark those points and further join in smooth possible curve 5.Repeat the construction on right side rectangle also.Join all in sequence. This locus is Parabola.

Problem: Draw an isosceles triangle of 100 mm long base and 110 mm long altitude.Inscribe a parabola in it by method of tangents.

PARABOLA
 METHOD OF TANGENTS

Solution Steps:

1. Construct triangle as per the given dimensions.
2. Divide it's both sides in to same no.of equal parts.
3. Name the parts in ascending and descending manner, as shown.
4. Join 1-1, 2-2,3-3 and so on.
5. Draw the curve as shown i.e.tangent to all these lines. The above all lines being tangents to the curve, it is called method of tangents.

Problem: Point P is 40 mm and 30 mm from horizontal and vertical axes respectively.Draw Hyperbola through it.

SSolution Steps:

Extend horizontal line from P to right side.
2Extend vertical line from Pupward. 3 On horizontal line from P, mark some points taking any distance and name them after P-1, 2,3,4 etc. 4 Join 1-2-3-4 points to pole O. Let them cut part [P-B] also at $1,2,3,4$ points.
5From horizontal 1,2,3,4 draw vertical lines downwards and 6From vertical 1,2,3,4 points [from P-B] draw horizontal lines.
7Line from 1 horizontal and line from 1 vertical will meet at P_{1}. Similarly mark $\mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}$ points.
8 Repeat the procedure by marking four points on upward vertical line from P and joining all those to pole O. Name this points $\mathrm{P}_{6}, \mathrm{P}_{7}, \mathrm{P}_{8}$ etc. and 40 mm join them by smooth curve.

ELLIPSE

TANGENT \& NORMAL

TO DRAW TANGENT \& NORMAL TO THE CURVE FROM A GIVEN POINT (Q)

```
1.JOIN POINT Q TO F.
2.CONSTRUCT 900 ANGLE WITH
    THIS LINE AT POINT F
3.EXTEND THE LINE TO MEET DIRECTRIX AT T
4. JOIN THIS POINT TO Q AND EXTEND. THIS IS TANGENT TO ELLIPSE FROM Q
5.TO THIS TANGENT DRAW PERPENDICULAR LINE FROM Q. IT IS NORMAL TO CURVE.
```


PARABOLA

TANGENT \& NORMAL

TO DRAW TANGENT \& NORMAL TO THE CURVE FROM A GIVEN POINT (Q)

```
1.JOIN POINT Q TO F.
2.CONSTRUCT 900}ANGLE WITH
THIS LINE AT POINT F
3.EXTEND THE LINE TO MEET DIRECTRIX AT T
4. JOIN THIS POINT TO Q AND EXTEND. THIS IS TANGENT TO THE CURVE FROM Q
5.TO THIS TANGENT DRAW PERPENDICULAR LINE FROM Q. IT IS NORMAL TO CURVE.
```


HYPERBOLA

TANGENT \& NORMAL

TO DRAW TANGENT \& NORMAL TO THE CURVE FROM A GIVEN POINT (Q)

1.JOIN POINT Q TO F.

2.CONSTRUCT 90° ANGLE WITH THIS LINE AT POINT F
3.EXTEND THE LINE TO MEET DIRECTRIX AT T 4. JOIN THIS POINT TO Q AND EXTEND. THIS IS TANGENT TO CURVE FROM Q
5.TO THIS TANGENT DRAW PERPENDICULAR LINE FROM Q. IT IS NORMAL TO CURVE.

INVOLUTE OF A CIRCLE

Solution Steps:

1) Point or end P of string $A P$ is exactly πD distance away from A. Means if this string is wound round the circle, it will completely cover given circle. B will meet A after winding.
2) Divide $\pi \mathrm{D}$ (AP) distance into 8 number of equal parts.
3) Divide circle also into 8 number of equal parts.
4) Name after A, 1, 2, 3, 4, etc. up to 8 on $\pi \mathrm{D}$ line AP as well as on circle (in anticlockwise direction). 5) To radius $\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-3$ up to $\mathrm{C}-8$ draw tangents (from 1,2,3,4,etc to circle).
5) Take distance 1 to P in compass and mark it on tangent from point 1 on circle (means one division less than distance AP).
6) Name this point P1
7) Take 2-B distance in compass and mark it on the tangent from point 2. Name it point P2.
8) Similarly take 3 to $P, 4$ to $P, 5$ to P up to 7 to P distance in compass and mark on respective tangents and locate P3, P4, P5 up to P8 (i.e. A) points and join them in smooth curve it is an INVOLUTE of a given circle.

Problem : Draw Involute of a circle.
 String length is equal to the circumference of circle.

PROBLEM : DRAW LOCUS OF A POINT ON THE PERIPHERY OF A CIRCLE WHICH ROLLS ON A CURVED PATH. Take diameter of rolling Circle $\mathbf{5 0} \mathbf{~ m m}$ And radius of directing circle i.e. curved path, 75 mm .

Solution Steps:

1) When smaller circle will roll on larger circle for one revolution it will cover Π D distance on arc and it will be decided by included arc angle θ.
2) Calculate θ by formula $\theta=(r / R) x$ 3600.
3) Construct angle θ with radius $O C$ and draw an arc by taking O as center OC as radius and form sector of angle θ.
4) Divide this sector into 8 number of equal angular parts. And from C onward name them $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ up to C8.
5) Divide smaller circle (Generating circle) also in 8 number of equal parts. And next to P in clockwise direction name those 1, 2, 3, up to 8 .
6) With O as center, $\mathrm{O}-1$ as radius draw an arc in the sector. Take 0-2, $0-$ $3,0-4,0-5$ up to $0-8$ distances with center O , draw all concentric arcs in sector. Take fixed distance C-P in compass, C 1 center, cut arc of 1 at P1. Repeat procedure and locate P2, P3, P4, P5 unto P8 (as in cycloid) and join them by smooth curve. This is EPI CYCLOID.

PROBLEM : DRAW LOCUS OF A POINT ON THE PERIPHERY OF A CIRCLE WHICH ROLLS FROM THE INSIDE OF A CURVED PATH. Take diameter of rolling circle 50 mm and radius of directing circle (curved path) $\mathbf{7 5} \mathbf{~ m m}$.

HYPO CYCLOID

Solution Steps:

1) Smaller circle is rolling here, inside the larger circle. It has to rotate anticlockwise to move ahead.
2) Same steps should be taken as in case of EPI CYCLOID. Only change is in numbering direction of 8 number of equal parts on the smaller circle.
3) From next to P in anticlockwise direction, name $1,2,3,4,5,6,7,8$.
4) Further all steps are that of epi - cycloid. This is called HYPO - CYCLOID.

$\mathrm{OC}=\mathbf{R}$ (Radius of Directing Circle)
$\mathbf{C P}=\mathbf{r} \quad$ (Radius of Generating Circle)

Involute

STEPS:
DRAW INVOLUTE AS USUAL.
MARK POINT Q ON IT AS DIRECTED.
JOIN Q TO THE CENTER OF CIRCLE C. CONSIDERING CQ DIAMETER, DRAW A SEMICIRCLE AS SHOWN.

MARK POINT OF INTERSECTION OF THIS SEMICIRCLE AND POLE CIRCLE AND JOIN IT TO Q.

THIS WILL BE NORMAL TO INVOLUTE.
DRAW A LINE AT RIGHT ANGLE TO THIS LINE FROM Q.

IT WILL BE TANGENT TO INVOLUTE.

STEPS:

DRAW CYCLOID AS USUAL.
MARK POINT Q ON IT AS DIRECTED.
WITH CP DISTANCE, FROM Q. CUT THE POINT ON LOCUS OF C AND JOIN IT TO Q.

FROM THIS POINT DROP A PERPENDICULAR ON GROUND LINE AND NAME IT N

JOIN N WITH Q.THIS WILL BE NORMAL TO CYCLOID.

DRAW A LINE AT RIGHT ANGLE TO THIS LINE FROM Q.

IT WILL BE TANGENT TO CYCLOID.

CYCLOID

Method of Drawing
Tangent \& Normal

SCALES

Prepared by
K. Mahesh

Asst. proff
Dept: mechanical

SCALES

DIMENSIONS OF LARGE OBJECTS MUST BE REDUCED TO ACCOMMODATE ON STANDARD SIZE DRAWING SHEET. THIS REDUCTION CREATES A SCALE OF THAT REDUCTION RATIO, WHICH IS GENERALLY A FRACTION..

SUCH A SCALE IS CALLED
AND
THAT RATIO IS CALLED

SIMILARLY IN CASE OF TINY OBJECTS DIMENSIONS MUST BE INCREASED FOR ABOVE PURPOSE. HENCE THIS SCALE IS CALLED
HERE THE RATIO CALLED REPRESENTATIVE FACTOR IS MORE THAN UNITY.

FOR FULL SIZE SCALE R.F.=1 OR (1:1)

MEANS DRAWING
\& OBJECT ARE OF SAME SIZE.
Other RFs are described as
1:10, 1:100,
1:1000, 1:1,00,000

USE FOLLOWING FORMULAS FOR THE CALCULATIONS IN THIS TOPIC.
(A) REPRESENTATIVE FACTOR (R.F.) $=\frac{\text { DIMENSION OF DRAWING }}{\text { DIMENSION OF OBJECT }}$

$$
\begin{aligned}
& =\frac{\text { LENGTH OF DRAWING }}{\text { ACTUAL LENGTH }} \\
& =\sqrt{\frac{\text { AREA OF DRAWING }}{\text { ACTUAL AREA }}} \\
& =\sqrt[3]{\frac{\text { VOLUME AS PER DRWG. }}{\text { ACTUAL VOLUME }}}
\end{aligned}
$$

B LENGTH OF SCALE = R.F. X MAX. LENGTH TO BE MEASURED.

BE FRIENDLY WITH THESE UNITS

1 KILOMETRE $=10$ HECTOMETRES
1 HECTOMETRE = 10 DECAMETRES
1 DECAMETRE $=10$ METRES
1 METRE $=10$ DECIMETRES
1 DECIMETRE $=10$ CENTIMETRES
1 CENTIMETRE $=10$ MILIMETRES

TYPES OF SCALES:

$$
\begin{array}{lll}
\text { 1. } & \text { PLAIN SCALES } & \text { (FOR DIMENSIONS UP TO SINGLE DECIMAL) } \\
\text { 2. } & \text { DIAGONAL SCALES } & \text { (FOR DIMENSIONS UP TO TWO DECIMALS) } \\
3 . & \text { VERNIER SCALES } & \text { (FOR DIMENSIONS UP TO TWO DECIMALS) } \\
\text { 4. } & \text { COMPARAATIVE SCALES (FOR COMPARING TWO DIFFERENT UNITS) } \\
5 . & \text { SCALE OF CORDS } & \text { (FOR MEASURING/CONSTRUCTING ANGLES) }
\end{array}
$$

PROBLEM :- Draw a scale $1 \mathrm{~cm}=1 \mathrm{~m}$ to read decimeters, to measure maximum distance of 6 m . Show on it a distance of 4 m and 6 dm .

CONSTRUCTION:- DIMENSION OF DRAWING
a) Calculate R.F. $=$ DIMENSION OF OBJECT

$$
\begin{aligned}
\text { R.F. } & =1 \mathrm{~cm} / 1 \mathrm{~m}=1 / 100 \\
\text { Length of scale } & =\text { R.F. } X \text { max. distance } \\
& =1 / 100 \times 600 \mathrm{~cm} \\
& =6 \mathrm{cms}
\end{aligned}
$$

b) Draw a line 6 cm long and divide it in 6 equal parts. Each part will represent larger division unit.
c) Sub divide the first part which will represent second unit or fraction of first unit.
d) Place (0) at the end of first unit. Number the units on right side of Zero and subdivisions on left-hand side of Zero. Take height of scale 5 to 10 mm for getting a look of scale.
e) After construction of scale mention it's RF and name of scale as shown.
f) Show the distance 4 m 6 dm on it as shown.

DECIMETERS

$$
\text { R.F. }=1 / 100
$$

PLANE SCALE SHOWING METERS AND DECIMETERS.

PROBLEM :- In a map a 36 km distance is shown by a line 45 cms long. Calculate the R.F. and construct a plain scale to read kilometers and hectometers, for max. 12 km . Show a distance of 8.3 km on it.

CONSTRUCTION:-
a) Calculate R.F.

$$
\text { R.F. }=45 \mathrm{~cm} / 36 \mathrm{~km}=45 / 36 \cdot 1000 \cdot 100=1 / 80,000
$$

Length of scale $=$ R.F. X max. distance

$$
\begin{aligned}
& =1 / 80000 \times 12 \mathrm{~km} \\
& =15 \mathrm{~cm}
\end{aligned}
$$

b) Draw a line 15 cm long and divide it in 12 equal parts. Each part will represent larger division unit.
c) Sub divide the first part which will represent second unit or fraction of first unit.
d) Place (0) at the end of first unit. Number the units on right side of Zero and subdivisions on left-hand side of Zero. Take height of scale 5 to 10 mm for getting a look of scale.
e) After construction of scale mention it's RF and name of scale as shown.
f) Show the distance 8.3 km on it as shown.

PROBLEM :. Draw a diagonal scale of R.F. 1: 2.5 , showing centimeters and millimeters and long enough to measure up to 20 centimeters.

SOLUTION STEPS:

R.F. = $1 / 2.5$

Length of scale $=1 / 2.5 \times 20 \mathrm{~cm}$.

$$
=8 \mathrm{~cm} .
$$

1.Draw a line 8 cm long and divide it in to 4 equal parts. (Each part will represent a length of 5 cm .)
2. Divide the first part into 5 equal divisions.
(Each will show 1 cm .)
3.At the left hand end of the line, draw a vertical line and on it step-off 10 equal divisions of any length.
4.Complete the scale as explained in previous problems. Show the distance 13.4 cm on it.

NOTATIONS

FOLLOWING NOTATIONS SHOULD BE FOLLOWED WHILE NAMEING DIFFERENT VIEWS IN ORTHOGRAPHIC PROJECTIONS.

SAME SYSTEM OF NOTATIONS SHOULD BE FOLLOWED
INCASE NUMBERS, LIKE 1, 2, 3-ARE USED.

PROJECTION OF POINTS,LINES AND PLANES

Prepared by
K. Mahesh

Asst. proff
Dept: mechanical

THIS QUADRANT PATTERN,
IF OBSERVED ALONG X-Y LINE (IN RED ARROW DIRECTION) WILL EXACTLY APPEAR AS SHOWN ON RIGHT SIDE AND HENCE, IT IS FURTHER USED TO UNDERSTAND ILLUSTRATION PROPERLLY.

PROJECTIONS OF A POINT IN FIRST QUADRANT.

PROJECTIONS OF STRAIGHT LINES.

INFORMATION REGARDING A LINE means

IT'S LENGTH,
POSITION OF IT'S ENDS WITH HP \& VP IT'S INCLINATIONS WITH HP \& VP WILL BE GIVEN. AIM:- TO DRAW IT'S PROJECTIONS - MEANS FV \& TV

SIMPLE CASES OF THE LINE

1. A VERTICAL LINE (LINE PERPENDICULAR TO HP \& // TO VP)
2. LINE PARALLEL TO BOTH HP \& VP.
3. LINE INCLINED TO HP \& PARALLEL TO VP.
4. LINE INCLINED TO VP \& PARALLEL TO HP.
5. LINE INCLINED TO BOTH HP \& VP.

STUDY ILLUSTRATIONS GIVEN ON NEXT PAGE SHOWING CLEARLY THE NATURE OF FV \& TV OF LINES LISTED ABOVE AND NOTE RESULTS.

Orthographic Projections
Means Fv \& Tv of Line AB are shown below,
with their apparent Inclinations $\alpha \& \beta$

Here TV (ab) is not // to XY line Hence it's corresponding FV
a' b' is not showing True Length \&
True Inclination with Hp.

Note the procedure
When Fv \& Tv known,
How to find True Length. (Views are rotated to determine True Length \& it's inclinations with Hp \& Vp).

In this sketch, TV is rotated and made // to XY line.
Hence it's corresponding
FV a' b_{1} 'Is showing
True Length \&
True Inclination with Hp.

Note the procedure
When True Length is known,
How to locate Fv \& Tv.
(Component a-1 of TL is drawn
which is further rotated to determine FV)

Here $a-1$ is component of $T L a b_{1}$ gives length of Fv.
Hence it is brought Up to Locus of a' and further rotated to get point b'. a' b' will be FV.

Similarly drawing component of other TL(a' b1') Tv can be drawn.

TYPES OF PLANE FIGURES

SQUARE

CIRCLE

PENTAGON

RECTANGLE

TRAPEZOID

HEXAGON

TRIANGLE

PARALLELOGRAM

DIAMOND

TYPES OF PLANES

PERPENDICULAR PLANES

Planes which are perpendicular to one of the principal planes of projection and inclined or parallel to the other

OBLIQUE PLANES

Planes inclined to both the reference planes

TRACE OF PLANE

HORIZONTAL TRACE

The intecsection line of the plane surface with H.P

VERTICAL TRACE
The intecsection line of the plane surface with V.P

PROJECTION OF PLANE PERPENDICULAR TO V.P AND PARALLEL TO H.P

PROJECTION OF PLANE PERPENDICULAR TO H.P AND PARALLEL TO V.P

PROJECTION OF PLANE PERPENDICULAR TO BOTH H.P AND V.P

EXAMPLE:-

A thin horizontal plate of 15 mm sides is inclined at 45° to the H.P and perpendicular to V.P, two of its parallel edges is parallel to V.P, the plate is 10 mm above H.P and 15 mm infront of V.P

EXAMPLE:-

Draw the projections of a regular hexagon of 20 mm side, having one of its sides in the H.P and inclined at 45° to the V.P; and its surface making an angle of 30° with the H.P

PROJECTION OF SOLIDS

Prepared by
K. Mahesh

Asst. proff
Dept: mechanical

SOLIDS

To understand and remember various solids in this subject properly, those are classified \& arranged in to two major groups.

Group A

Solids having top and base of same shape

Group B
Solids having base of some shape and just a point as a top, called apex.

Cylinder

Prisms

Cube
(A solid having six square faces)

Pyramids

Square Pentagonal Hexagonal

Tetrahedron
(A solid having Four triangular faces)

SOLIDS

Dimensional parameters of different solids.

While observing Fv, x-y line represents Horizontal Plane. (Hp)

X While observing Tv, $\mathrm{x}-\mathrm{y}$ line represents Vertical Plane. (Vp)
T.V.
T.V.

RESTING ON V.P
On one point of base circle.
Axis inclined to Vp And // to Hp
T.V.

LYING ON V.P

On one generator.
Axis inclined to Vp
And // to Hp

Q Draw the projections of a pentagonal prism , base 25 mm side and axis 50 mm long, resting on one of its rectangular faces on the H.P. with the axis inclined at 450 to the V.P.

Problem : Draw the projections of a cone, base 45 mm diameter and axis 50 mm long, when it is resting on the ground on a point on its base circle with (a) the axis making an angle of 30° with the HP and 45° with the VP (b) the axis making an angle of 30° with the HP and its top view making 45° with the VP

Problem : A cube of 50 mm long edges is so placed on HP on one corner that a body diagonal is parallel to HP and perpendicular to

VP Draw it's projections.

Problem : A cube of 50 mm long edges is so placed on HP on one corner that a body diagonal is parallel to HP and perpendicular to

VP Draw it's projections.

Problem : A cube of 50 mm long edges is so placed on HP on one corner that a body diagonal is parallel to HP and perpendicular to

VP Draw it's projections.

SECTION OF SOLID AND DEVELOPMENT OF SURPHASES

Prepared by
K. Mahesh

Asst. proff
Dept: mechanical

Sectional Views

- The internal hidden details of the object are shown in orthographic views by dashed lines.
- The intensity of dashed lines in orthographic views depends on the complexity of internal structure of the object.
- If there are many hidden lines, it is difficult to visualize the shape of the object
- unnecessarily complicated and confusing.
- Therefore, the general practice is to draw sectional views for complex objects in addition to or instead of simple orthographic views.
- A sectional view, as the name suggests, is obtained by taking the section of the object along a particular plane. An imaginary cutting plane is used to obtain the section of the object.

SECTIONING A SOLID.

An object (here a solid) is cut by some imaginary cutting plane
to understand internal details of that object.

The action of cutting is called SECTIONING a solid \&
The plane of cutting is called SECTION PLANE.

Two cutting actions means section planes are recommended.
A) Section Plane perpendicular to Vp and inclined to Hp. (This is a definition of an Aux. Inclined Plane i.e. A.I.P.) NOTE:- This section plane appears as a straight line in FV.
B) Section Plane perpendicular to Hp and inclined to Vp . (This is a definition of an Aux. Vertical Plane i.e. A.V.P.) NOTE:- This section plane appears as a straight line in TV.
Remember:-

1. After launching a section plane either in FV or TV, the part towards observer is assumed to be removed.

2. As far as possible the smaller part is assumed to be removed.

Typical Section Planes

\&
Typical Shapes Of
Sections.

Section Plane Parallel to end generator.

Cylinder through generators.

Sq. Pyramid through all slant edges

Hatching of the Sections

- The surface created by cutting the object by a section plane is called as section.
- The section is indicated by drawing the hatching lines (section lines) within the sectioned area.
- The hatching lines are drawn at 45° to the principal outlines or the lines of symmetry of the section
- The spacing between hatching lines should be uniform and in proportion to the size of the section.

Problem: -A cone of diameter 60 mm and height 60 mm is resting on HP on one of its generators. A section plane whose VT is parallel to HP and 15 mm above HP, cuts the solid removing the top portion. Draw the front view and sectional top view of the solid.

Assume cone is resting on HP
Tilt cone about its corner

Problem: A pentagonal prism, 30 mm base side \& 50 mm axis is standing on Hp on it's base whose one side is perpendicular to Vp.It is cut by a section plane 45^{0} inclined to Hp , through mid point of axis.Draw Fv, sec.Tv \& sec. Side view. Also draw true shape of

Problem: A Cone base 75 mm diameter and axis 80 mm long is resting on its base on H.P. It is cut by a section plane perpendicular to the V.P., inclined at 45° to the H.P. and cutting the axis at a point 35 mm from the apex. Draw the front view, sectional top ${ }_{0}$ view, sectional side view and ${ }^{X_{1}}$ true shape of the section.

Development of lateral surfaces of different solids.
(Lateral surface is the surface excluding top \& base)

Cylinder: A Rectangle

Prisms:
No.of Rectangles

Tetrahedron: Four Equilateral Triangles

Cone: (Sector of circle)

$\theta=\frac{\mathrm{R}}{\mathrm{L}} \times 360^{\circ}$

Pyramids: (No.of triangles)

Cube: Six Squares.

FRUSTUMS

DEVELOPMENT OF

 FRUSTUM OF CONE
$\mathrm{R}=$ Base circle radius of cone
$\mathrm{L}=$ Slant height of cone
$\mathrm{L}_{1}=$ Slant height of cut part.

DEVELOPMENT OF
FRUSTUM OF SQUARE PYRAMID

L= Slant edge of pyramid
$\mathrm{L}_{1}=$ Slant edge of cut part.

Problem : A cone, 50 mm base diameter and 70 mm axis is standing on it's base on Hp . It cut by a section plane 45^{0} inclined to Hp through base end of end generator. Draw projections, sectional views, true shape of section and development of surfaces of remaining solid.

Solution Steps:for sectional views: Draw three views of standing cone. Locate sec.plane in Fv as described. Project points where generators are getting Cut on Tv \& Sv as shown in illustration.Join those points in sequence and show Section lines in it. Make remaining part of solid dark.

For True Shape:

 Draw $x_{1} y_{1} / /$ to sec. plane Draw projectors on it from cut points.Mark distances of points of Sectioned part from Tv, on above projectors from $\mathrm{x}_{1} \mathrm{y}_{1}$ and join in sequence. Draw section lines in it. It is required true shape.

SECTIONAL S.V

Alamifurmation ada:

Draw development of entire solid. Name from cut-open edge i.e. A. in sequence as shown.Mark the cut points on respective edges. Join them in sequence in curvature. Make existing parts dev.dark.

Q : A square pyramid, base 40 mm side and axis 65 mm long, has its base on the HP and all the edges of the base equally inclined to the VP. It is cut by a section plane, perpendicular to the VP, inclined at 45° to the HP and bisecting the axis. Draw its sectional top view, sectional side view and true shape of the section. Also draw its development.

Q: A square prism of 40 mm edge of the base and 65 mm height stands on its base on the HP with vertical faces inclined at 45° with the VP. A horizontal hole of 40 mm diameter is drilled centrally through the prism such that the hole passes through the opposite vertical edges of the prism, draw the development og the surfaces of the prism.

