JYOTHISHMATHI INSTITUTE OF THECHNOLOGY AND SCIENCE
NUSTHULPUR ,KARIMNAGAR

FORMAL LANGUAGES AND AUTOMATA THEORY
CONTEXT FREE LAGUAGES(CFL)

K.LAVANYA
ASST. PROFESSOR
CSE DEPT



i Topics

1) SiImplifying CFGs, Normal forms
2)  Pumping lemma for CFLs

3) Closure and decision properties of
CFLs



!L How to “simplify” CFGs?



i Three ways to simplify/clean a CFG

(clean)
1. Eliminate useless symbols

(simplify)

2. Eliminate e-productions A e

3. Eliminate unit productions AYSB



!L Eliminating useless symbols

Grammar cleanup




Eliminating useless symbols

A symbol X is reachable if there exists:
[ S 9* a X B

A symbol X is generating if there exists:
m X =7 W,
= forsomew e T*

For a symbol X to be “useful’, it has to be both
reachable and generating

= S 2 aXp D w, for some w’ € T*

reachable generating



Algorithm to detect useless
symbols

1. First, eliminate all symbols that are not
generating

2. Next, eliminate all symbols that are not
reachable

Is the order of these steps important,
or can we switch?



Example: Useless symbols

= S>AB|a
= ADD

1. A, S are generating
2. B is not generating (and therefore B is useless)

3. ==>Eliminating B... (i.e., remove all productions that involve B)
1. S=»a
2 A=>D

4. Now, A is not reachable and therefore is useless

5. Simplified G} | \what would happen if you reverse the order:
L S>a l.e., test reachability before generating?

Will fail to remove:
A=Db




X =W

i Algorithm to find all generating symbols

= Given: G=(V,T,P,S)
= Basis:
= Every symbol in T is obviously generating.

= Induction:

= Suppose for a production A=>» o, where o
IS generating

= Then, A Is also generating




S22 aX/p

i Algorithm to find all reachable symbols

= Given: G=(V,T,P,S)
= Basis:
= S is obviously reachable (from itself)

= Induction:

= Suppose for a production A=>» o, a,... oy,
where A Is reachable

= Then, all symbols on the right hand side,
{a4, a0, ,... o, } @re also reachable.
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!L Eliminating e-productions

A=>c¢

X

11



What'’s the point of removing e-productions?

A=

i Eliminating e-productions

Caveat: It is not possible to eliminate €-productions for
languages which include € in their word set

So we will target the grammar for the rest of the language

Theorem: If G=(V,T,P,S) is a CFG for a language L,
then L\ {€} has a CFG without &-productions

Definition: A is “nullable” if A=»* &

= If Ais nullable, then any production of the form
“‘B=>» CAD” can be simulated by:

« B CD|CAD

This can allow us to remove ¢ transitions for A

12



Algorithm to detect all nullable
variables

s Basis:

= If A= ¢ Is a production in G, then A is
nullable
(note: A can still have other productions)

= Induction:

= If there is a production B=>» C,C....C,,
where every C,; is nullable, then B is also
nullable

13



Eliminating e-productions

Given: G=(V,T,P,S)

Algorithm:
1. Detect all nullable variables in G

2. Then construct G,=(V,T,P,,S) as follows:

. For each production of the form: A=>» X, X,...X,, where
k=21, suppose m out of the k X's are nullable symbols

i~ Then G, will have 2™ versions for this production
i.e, all combinations where each X; is either present or absent

i Alternatively, if a production is of the form: A=»¢, then
remove it

14



Example: Eliminating ¢-

productions
o Let L be the language represented by the following CFG G:
] S=>AB
i A=>aAA | ¢ : .
) B>bBB | ¢ Simplified
grammar

Goal: To construct G1, which is the grammar for L-{c}

¥ Nullable symbols:  {A, B} TR
o G, can be constructed from G as follows Gy
- B=Db|bB|bB|bBB * S>A|B|AB
. = B-)b|bB|bBB © A>alah]aiA
= Similarly, A>alaAlapAa | |~ B>DIbBIDbBE
= Similarly, S>A|B|AB | +

. Note: L(G) = L(G,) U {g}

______________________________________



Eliminating unit productions

A=>B <— B has to be a variable

X

: : : : " -
What's the point of removing unit transitions * Will save #substitutions

Eg.[A=>B] ... A=>xxXxX | yyy | zzz | ...

B=>C| ... > [B=>xxx|yyy | zzz | ...
C=>D]|...

C=>xxx|yyy|zzz] ...
D=>xxX | yyy | zzz D=>xxX | yyy | zzz

before after



A =2B
Eliminating unit productions

& Unit production is one which is of the form A=>» B, where both A & B
are variables

= E.g.,
L E=>T|E+T
2 T=>F|TF
s FE>I1|(E)
« I>albllallb|l0]I1
. How to eliminate unit productions?

o Replace E= T with E = F | T*F

5 Then, upon recursive application wherever there is a unit production:

E=>F|TF| E+T (substituting for T)
E=2>I|(E) | T*F| E+T (substituting for F)
E>alb|lallb|IO|IL]|(E)|T*F|E+T (substituting for I)

Now, E has no unit productions

e Similarly, eliminate for the remainder of the unit productions

17



The Unit Pair Algorithm:
to remove unit productions

= Suppose A>B, 2B, =2 ... 2B, =2

= Action: Replace all intermediate productions to produce a
directly

= .e, A2 qo; B2 a;... B, = q;

Definition: (A,B) to be a “unit pair” if A=>"B

= We can find all unit pairs inductively:
= Basis: Every pair (A,A) is a unit pair (by definition). Similarly, if
A=>B is a production, then (A,B) is a unit pair.

= Induction: If (A,B) and (B,C) are unit pairs, and A=>»C is also a unit
pair.
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The Unit Pair Algorithm:
to remove unit productions

Input: G=(V,T,P,S)

Goal: to build G,=(V,T,P,,S) devoid of unit
productions

Algorithm:
1. Find all unit pairs in G
2. For each unit pair (A,B) in G:

. Add to P, a new production A=>»a, for every
B=>»o which is a non-unit production

2. If a resulting production is already there in P,
then there Is no need to add it.

19
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HowDdN o

Example: eliminating unit
productions

F 3 IHE T

|2 al|bliallb|I0]IL}

\

__________________________

-
-
-

BN PO

EE+T|T*F|(E)|a|b|la|lb]
TS T*F|(E)|a|b|la|lb|l0]I1
F (E)|alb|lallb]|I0]I1
|9 a|bllallb|I0]I1

________ Unit pairs Only non-unit
____________________ productions to be
__________________________ -added to P,

T €D e lE9ET
g ED T leare
(E,F) £ (E) |
(E.) E>albllalb]10]I1 :
(TT) TITF
(T.F) T (E)
(T.) T albjlallb|I0]I1
ofi (RF) F = (E)
<3 (F.1) F=>a|blla|lb]I0]
11
(LD |>alb|la|lb|l10]
11
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Putting all this together...

= Theorem: If G is a CFG for a language that
contains at least one string other than g, then there
Is another CFG G,, such that L(G,)=L(G) - ¢, and
G, has:
= NO ¢ -productions
= N0 unit productions
= No useless symbols

= Algorithm:
Step 1) eliminate ¢ -productions Again,
Step 2) eliminate unit productions the order is
Step 3) eliminate useless symbols important!

Why?
21



!L Normal Forms

22



:L Why normal forms?

= If all productions of the grammar could be
expressed in the same form(s), then:

a. It becomes easy to design algorithms that use
the grammar

». It becomes easy to show proofs and properties

23



i Chomsky Normal Form (CNF)

Let G be a CFG for some L-{¢}

Definition:

G Is said to be in Chomsky Normal Form if all
Its productions are in one of the following

two forms:
A =2 BC where A,B,C are variables, or
A =a where a is a terminal

= G has no useless symbols
= G has no unit productions

\ = G has no ¢productions /
24




CNF checklist

Is this grammar in CNF?

'

EE+T|T*F|(E)|la|Ib]10]I1
TS T*F|(E)|la|lb]l10]I1

F (E)|lallb|I0]I1

|2 a|bllallb|I0]I1

HwWN PO

Checkilist:
« G has no e-productions v
* G has no unit productions v
* G has no useless symbols
e But...

* the normal form for productions is violated

=== S0, the grammar is not in CNF
25



How to convert a G into CNF?

= Assumption: G has no e-productions, unit productions or useless
symbols
1) For every terminal a that appears in the body of a production:

. create a unique variable, say X, with a production X, = a, and
i replace all other instances of a in G by X,

2y Now, all productions will be in one of the following
two forms:
= A= B,B,... B, (k=3) or A=>a

3) Replace each production of the form A = B,B.B,... B, by:
<>
B, C, and so on...
Bl C1

| A9 Blcl C19 82(:2 - Ck-39 Bk_zck_z Ck_za Bk-lBk

26



Example #1

|©

S =>AS | BABC
A=>Al|0AL |01

B=>0B|0 =)

C=>1C]|1

All productions are of the form: A=>BC or A=>a

G in CNF:

Xo=>0

X;=>1

S =>AS | BY,

Y, => AY,

Y, => BC

A=>AXy [ XY | XXy
Y, => AX,

B =>X,B0
C=>X,C|1

27



Example #2

O©CONOAWNE

E D EX,T|TXF | XEX, | 1Xq | X, | 1% | 1X,
T TXF | XEXy | IXq | 1% [ 1Xo | 1X4

F > XEXy | X, [ 1% | 1Xo | 1X4
Earananansns

X, D>+

o

X, D>+

X (

G

1. ESE+T|TF|(E)|la]lb]10]I1

2. TSTF[E)]|lallb[l0]I11

3. F>@E)|la|bli0[1 —_—

4. 12a|bllalib[I0]11 Step (1)

D

%\QQ/

1. E=>EC,|TC,|XCs|Xq| Xy | X | 1X;

2. C,dXT

3. C,d> XF

4. C; EX

5 TS ..

6.

28




:L Languages with ¢

= For languages that include &,
= Write down the rest of grammar in CNF

= Then add production “S => ¢” at the end

E.g., consider: G in CNF:

G: X,=>0
S =>AS | BABC X =>1
A=>A1|0A1|01]¢ S =>AS|BY, | ¢

=> —

B OBlOlS Y1—>AY2
C=>1C|1]e :; Y,=>BC

A=>AXy | XoYs | XXy
Y5 =>AX;

B=>X,B|0
C=>X,C|1




:L Other Normal Forms

= Griebach Normal Form (GNF)

= All productions of the form
A==>a a

30



! Return of the Pumping Lemma !!

Think of languages that cannot be CFL

== think of languages for which a stack will not be enough

e.g., the language of strings of the form ww

31



i Why pumping lemma?

= A result that will be useful in proving
languages that are not CFLs

= (Just like we did for regular languages)

= But before we prove the pumping
lemma for CFLs ....

= Let us first prove an important property
about parse trees

32



Observe that any parse tree generated by a CNF will be a
binary tree, where all internal nodes have exactly two children
(except those nodes connected to the leaves).

The “parse tree theore

7

Given: Parse tree for w

= Suppose we have a
parse tree for a
string w, according
to a CNF grammar,
G=(V,T,P,S)

A
1
1
1
1
1
1
1
1
1
1
1
1
1

h

= tree height

= Let hbe the height of

the parse tree
Implies: i
s |w| s 201 o

I
I
|
|
|
|
I
:
|
v

v

In other words, a CNF parse tree’s string yield (w) W
can no longer be 2h-1 33



To show: lw| € 2h-1

Proof...The size of parse trees

Proof: (using induction on h) Parse tree for w
Basis: h=1
=» Derivation will have to be
‘S=>a’
> |wj= 1 =211,

Ind. Hyp: h = k-1
= |w|s 2k2

Ind. Step: h =k

S will have exactly two children:
S=>AB

=» Heights of A & B subtrees are
at most h-1

2> W = W, Wg, Where |w,| < 2k2
and |wg| < 2k2 Wa Wpg

= |w| < 2k1
34



Implication of the Parse Tree

i Theorem (assuming CNF)

Fact:

= If the height of a parse tree is h, then
. ==> |W| < 2h-1

Implication:
= If |w| = 2™, then
=« Its parse tree’s height is at least m+1

35



i The Pumping Lemma for CFLs

Note: we are pumping in two places (v & X)
36




i Proof: Pumping Lemma for CFL

= If L=® or contains only ¢, then the lemma is
trivially satisfied (as it cannot be violated)

= For any other L which is a CFL.
= Let G be a CNF grammar for L
= Let m = number of variables in G
= Choose N=2m.
= Pickanyz e Ls.t. |z2N

=>» the parse tree for z should have a height =2 m+1
(by the parse tree theorem)

37



Parse tree for z

ri m vels
"/‘" mva iables, > le
. '

1

h-msi<j<h

Z = UVWXY

Therefore, vx#e

A
|
|
1
I
:
: A
! |
! |
! I
|
|
hzm+1
|
: m+1
I |
X |
. |
I |
I |
I I
I |
v 1
v v

38



Extending the parse tree...

Replacing Or, replacing
A vv_|th A A; with A;
(k times)

—

h=m+1

Z = uwy

=—= For all k=0: uvkwxky el

v

Z = uvkwxky 39



:L Proof contd..

» Also, since A’s subtree no taller than m+1

==> the string generated under A's subtree, which is
vWwx, cannot be longer than 2™ (=N)

But, 2™ =N
==> |vwx| =N

This completes the proof for the pumping lemma.

40



Application of Pumping

i Lemma for CFLs

Example 1. L ={a™b™c™ | m>0 }
Claim: L i1s not a CFL
Proof:

= Let N <== P/L constant
= Pick z = aNpbNcM
= Apply pumping lemma to z and show that there

exists at least one other string constructed from z
(obtained by pumping up or down) that is ¢ L

41



:L Proof contd...

= Z = UVWXY
= Asz=aVbNcN and |vwx| < N and vx#e

= ==>vV, X cannot contain all three symbols
(a,b,c)
= ==> We can pump up or pump down to build

another string which is ¢ L

42



:L Example #2 for P/L application

s L={ww]|wisin{0,1}*}
s Show that L i1s not a CFL

= Try string z = ONON
what happens?

= Try string z = ONINQNZN
what happens?

43



i Example 3

s L=/ 0K° | k is any integer)

= Prove L is not a CFL using Pumping
Lemma

44



:L Example 4

s L ={abick|i<j<k}

s Prove that L I1s not a CFL

45



!L CFL Closure Properties

46



Closure Property Results

s CFLs are closed under:
= Union
= Concatenation
= Kleene closure operator
= Substitution
= Homomorphism, inverse homomorphism
= reversal —

= CFLs are not closed under: Note: Reg 'af;guages
: are ciose
o In_tersectlon _ under
» Difference these
» Complementation operators

47



Strategy for Closure Property
Proofs

= First prove “closure under substitution”
= Using the above result, prove other closure properties

s CFLs are closed under:
= Union <
= Concatenation <
» Kleene closure operator <

Prove ‘- Substitution
thisfirst -~ . Homomorphism, inverse homomorphism «_
= Reversal

48



i The Substitution operation

For each a € ), then let s(a) be a language
If w=a,a,...a, € L, then:
s S(W) ={XX,... } €s(L), s.t.,Xx e s(q)
Example:
= Let ¥={0,1}
= Let: s(0) ={a"b" | n 21}, s(1) = {aa,bb}
« Ifw=01, s(w)=s(0).s(1)
= E.g., s(w) contains a' b!aa, al bbb,

a2 b2 aa, a2 b2bb,
...and so on.

49



CFLs are closed under

:L Substitution

IF L Is a CFL and a substititution defined
onL, s(L), I1ss.t.,, s(a) Is a CFL for every
symbol a, THEN:

= S(L) isalso a CFL

What is s(L)?

L s(L)
[ Wy ] s(L) [ s(wy) 7 Note: each s(w)

W, s(w,) is itself a set of strings
1 ws [ > 7 s(wg)

Wy S(Wy)

E— S = 50



CFLs are closed under
Substitution

= G=(V,T,P,S): CFGfor L

= Because every s(a) is a CFL, there is a CFG for each s(a)
« LetG,=(V,T,P.S,)

= Construct G’=(V’, T',P’,S) for s(L)

s P’ consists of:

= The productions of P, but with every occurrence of terminal “a” in
their bodies replaced by S,.

= All productions in any P_, forany a € )

51



Substitution of a CFL:
example

Let L = language of binary palindromes s.t., substitutions for O
and 1 are defined as follows:

s S(0)={a"b" | n 21}, s(1) = {xx,yy}
Prove that s(L) is also a CFL.

CFG for L:

S=> 0S0[1S1]e

CFEG for s(0):

S,=>aSyb | ab

CFEG for s(1):

S;=> xx | yy

U

Therefore, CFG for s(L):

S=>S5,SS,| S;S S, |e
S,=>aSyb | ab
S1=>Xx | yy

52



i CFLs are closed under union

Let L, and L, be CFLs
Toshow: L, UL, is alsoa CFL

et us show by using the result of Substitution

= Make a new language:
= L., =1{ab}s.t,s(@=L,ands(b) =L,
==>53(L,) =—Sameas==L, UL, ]

= A more direct, alternative proof

= Let S; and S, be the starting variables of the
grammars for L, and L,

« Then, S, => S, | S,
53



CFLs are closed under

:L concatenation

= Letl, and L, be CFLs

et us show by using the result of Substitution

= Make L.~ {ab} s.t.,
s(a) =L, and s(b)=L,
==> Ll I—2 - S(l—new)

= A proof without using substitution?

54



CFLs are closed under

i Kleene Closure

m LetL be a CFL

= LetlL,,={aj*ands(a) =L,

= Then, L* = s(L )

55



We won’t use substitution to prove this result

CFLs are closed under

i Reversal

= Let L be a CFL, with grammar
G=(V,T,P,S)

= For LR, construct GR=(V,T,PR,S) s.t.,

s If A==> a IS In P, then:
« A==> gRis in PR

=« (that is, reverse every production)

56



Some negative closure results

CFLs are not closed under

:L Intersection

= EXistential proof:
= L, = {0"1"2i | n21,i21}
= L, = {0'12" | n21,i21}

= Both L, and L, are CFLs
= Grammars?

= ButL, nL, cannot be a CFL
= Why?

= We have an example, where intersection is
not closed.

s Therefore, CFLs are not closed under
Intersection .




Some negative closure results

CFLs are not closed under

i complementation

s Follows from the fact that CFLs are not
closed under intersection

Loqic: if CFLs were to be closed under complementation
=>» the whole right hand side becomes a CFL (because
CFL is closed for union)
=>» the left hand side (intersection) is also a CFL
=>» but we just showed CFLs are
NOT closed under intersection!

=» CFLs cannot be closed under complementation. ”



Some negative closure results

CFLs are not closed under

i difference

= Follows from the fact that CFLs are not
closed under complementation

s Because, if CFLs are closed under
difference, then:

0 t - Z* - L
= So L has to be a CFL too
= Contradiction

59



:L Decision Properties

= Emptiness test
= Generating test
= Reachability test

= Membership test
= PDA acceptance

60



“Undecidable” problems for
CFL

= Is a given CFG G ambiguous?

= Is a given CFL inherently ambiguous?
= IS the Intersection of two CFLs empty?
= Are two CFLs the same?

= Is agiven L(G) equal to > *?

61



Summary

= Normal Forms
= Chomsky Normal Form
= Griebach Normal Form
= Useful in proroving P/L

= Pumping Lemma for CFLs
=« Main difference: z=uviwxly
= Closure properties

U Closed under: union, concatentation, reversal, Kleen
closure, homomorphism, substitution

= Not closed under: intersection, complementation,
difference

62



