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Topics 

1) Simplifying CFGs, Normal forms

2) Pumping lemma for CFLs

3) Closure and decision properties of 

CFLs
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How to “simplify” CFGs?
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Three ways to simplify/clean a CFG

(clean)

1. Eliminate useless symbols

(simplify)

2. Eliminate -productions

3. Eliminate unit productions

A => 

A => B
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Eliminating useless symbols

Grammar cleanup
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Eliminating useless symbols

A symbol X is reachable if there exists:
◼ S ➔*  X 

A symbol X is generating if there exists: 
◼ X  ➔* w,

◼ for some w  T*

For a symbol X to be “useful”, it has to be both 
reachable and generating

◼ S   ➔*  X  ➔
* w’, for some w’  T*

reachable generating
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Algorithm to detect useless 

symbols

1. First, eliminate all symbols that are not 

generating

2. Next, eliminate all symbols that are not 

reachable 

Is the order of these steps important, 

or can we switch?
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Example: Useless symbols

◼ S➔AB | a

◼ A➔ b

1. A, S are generating

2. B is not generating (and therefore B is useless)

3. ==> Eliminating B… (i.e., remove all productions that involve B)
1. S➔ a

2. A ➔ b

4. Now, A is not reachable and therefore is useless

5. Simplified G: 
1. S ➔ a

What would happen if you reverse the order: 

i.e., test reachability before generating?

Will fail to remove: 

A ➔ b
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Algorithm to find all generating symbols

◼ Given: G=(V,T,P,S)

◼ Basis: 

◼ Every symbol in T is obviously generating.

◼ Induction:

◼ Suppose for a production A➔ , where 

is generating

◼ Then, A is also generating

X  ➔* w
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Algorithm to find all reachable symbols

◼ Given: G=(V,T,P,S)

◼ Basis: 

◼ S is obviously reachable (from itself)

◼ Induction:

◼ Suppose for a production A➔ 1 2…k, 
where A is reachable

◼ Then, all symbols on the right hand side, 
{1,2 ,…k} are also reachable.

S ➔*  X 
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Eliminating -productions

A => 
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Eliminating -productions

Caveat: It is not possible to eliminate -productions for 

languages which include  in their word set

Theorem: If G=(V,T,P,S) is a CFG for a language L, 

then L\ {} has a CFG without -productions

Definition: A is “nullable” if A➔* 
◼ If A is nullable, then any production of the form 

“B➔ CAD” can be simulated by:

◼ B ➔ CD | CAD
◼ This can allow us to remove  transitions for A

A ➔ 

So we will target the grammar for the rest of the language

What’s the point of removing -productions?
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Algorithm to detect all nullable 

variables

◼ Basis:

◼ If A➔  is a production in G, then A is 

nullable

(note: A can still have other productions)

◼ Induction:

◼ If there is a production B➔ C1C2…Ck, 

where every Ci is nullable, then B is also 

nullable
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Eliminating -productions

Given: G=(V,T,P,S)

Algorithm:
1. Detect all nullable variables in G

2. Then construct G1=(V,T,P1,S) as follows:
i. For each production of the form: A➔X1X2…Xk, where 

k≥1, suppose m out of the k Xi’s are nullable symbols

ii. Then G1 will have 2m versions for this production 
i. i.e, all combinations where each Xi is either present or absent

iii. Alternatively, if a production is of the form: A➔, then 
remove it
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Example: Eliminating -
productions

◼ Let L be the language represented by the following CFG G:

i. S➔AB

ii. A➔aAA | 

iii. B➔bBB | 

Goal: To construct G1, which is the grammar for L-{}

◼ Nullable symbols: {A, B}

◼ G1 can be constructed from G as follows:

◼ B ➔ b | bB | bB | bBB

◼ ==> B ➔ b | bB | bBB

◼ Similarly, A ➔ a | aA | aAA

◼ Similarly, S ➔ A | B | AB

◼ Note: L(G) = L(G1) U {}

G1:

• S ➔ A | B | AB

• A ➔ a | aA | aAA

• B ➔ b | bB | bBB

• S ➔ 

+

Simplified

grammar
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Eliminating unit productions

A => B B has to be a variable

What’s the point of removing unit transitions ?

A=>B | …

B=>C | …

C=>D | …

D=>xxx | yyy | zzz

A=>xxx | yyy | zzz | …

B=> xxx | yyy | zzz | …

C=> xxx | yyy | zzz | …

D=>xxx | yyy | zzz

Will save #substitutions 

E.g., 

before after
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Eliminating unit productions
◼ Unit production is one which is of the form A➔ B, where both A & B 

are variables

◼ E.g.,
1. E ➔ T | E+T

2. T ➔ F | T*F

3. F ➔ I | (E)

4. I ➔ a | b | Ia | Ib | I0 | I1

◼ How to eliminate unit productions?

◼ Replace E➔ T with E ➔ F | T*F

◼ Then, upon recursive application wherever there is a unit production:
◼ E➔ F | T*F | E+T (substituting for T)

◼ E➔ I | (E)  | T*F| E+T (substituting for F)

◼ E➔ a | b | Ia | Ib | I0 | I1 | (E) | T*F | E+T (substituting for I)

◼ Now, E has no unit productions

◼ Similarly, eliminate for the remainder of the unit productions

A ➔ B
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The Unit Pair Algorithm:

to remove unit productions

◼ Suppose A➔B1 ➔B2 ➔ … ➔ Bn ➔ 

◼ Action: Replace all intermediate productions to produce 
directly
◼ i.e., A➔ ; B1➔ ; … Bn ➔ ;

Definition: (A,B) to be a “unit pair” if A➔*B  

◼ We can find all unit pairs inductively:
◼ Basis: Every pair (A,A) is a unit pair (by definition). Similarly, if 

A➔B is a production, then (A,B) is a unit pair.

◼ Induction: If (A,B) and (B,C) are unit pairs, and A➔C is also a unit 
pair. 
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The Unit Pair Algorithm:

to remove unit productions

Input: G=(V,T,P,S)

Goal: to build G1=(V,T,P1,S) devoid of unit 
productions

Algorithm:

1. Find all unit pairs in G

2. For each unit pair (A,B) in G:
1. Add to P1 a new production A➔, for every 

B➔ which is a non-unit production

2. If a resulting production is already there in P, 
then there is no need to add it.
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Example: eliminating unit 

productions

G:

1. E ➔ T | E+T

2. T ➔ F | T*F

3. F ➔ I | (E)

4. I ➔ a | b | Ia | Ib | I0 | I1

Unit pairs Only non-unit 

productions to be 

added to P1

(E,E) E ➔ E+T

(E,T) E ➔ T*F

(E,F) E ➔ (E)

(E,I) E ➔ a|b|Ia | Ib | I0 | I1

(T,T) T ➔ T*F

(T,F) T ➔ (E)

(T,I) T ➔ a|b| Ia | Ib | I0 | I1

(F,F) F ➔ (E)

(F,I) F ➔ a| b| Ia | Ib | I0 | 

I1

(I,I) I ➔ a| b | Ia | Ib | I0 | 

I1

G1:

1. E ➔ E+T | T*F | (E) | a| b | Ia | Ib | I0 | I1

2. T ➔ T*F | (E) | a| b | Ia | Ib | I0 | I1

3. F ➔ (E) | a| b | Ia | Ib | I0 | I1 

4. I ➔ a | b | Ia | Ib | I0 | I1
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Putting all this together…

◼ Theorem: If G is a CFG for a language that 
contains at least one string other than , then there 
is another CFG G1, such that L(G1)=L(G) - , and 
G1 has:

◼ no  -productions

◼ no unit productions

◼ no useless symbols

◼ Algorithm:
Step 1) eliminate  -productions

Step 2) eliminate unit productions

Step 3) eliminate useless symbols

Again, 

the order is

important!

Why?
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Normal Forms
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Why normal forms?

◼ If all productions of the grammar could be 
expressed in the same form(s), then:

a. It becomes easy to design algorithms that use 
the grammar

b. It becomes easy to show proofs and properties
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Chomsky Normal Form (CNF)

Let G be a CFG for some L-{}

Definition: 

G is said to be in Chomsky Normal Form if all 

its productions are in one of the following 

two forms:
i. A ➔ BC where A,B,C are variables, or

ii. A ➔ a where a is a terminal

◼ G has no useless symbols

◼ G has no unit productions

◼ G has no -productions
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CNF checklist

G1:

1. E ➔ E+T | T*F | (E) | Ia | Ib | I0 | I1

2. T ➔ T*F | (E) | Ia | Ib | I0 | I1

3. F ➔ (E) | Ia | Ib | I0 | I1 

4. I ➔ a | b | Ia | Ib | I0 | I1

Checklist:

• G has no -productions

• G has no unit productions

• G has no useless symbols

• But…

• the normal form for productions is violated

Is this grammar in CNF?

So, the grammar is not in CNF
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How to convert a G into CNF?
◼ Assumption: G has no -productions, unit productions or useless 

symbols

1) For every terminal a that appears in the body of a production: 
i. create a unique variable, say Xa, with a production Xa ➔ a, and

ii. replace all other instances of a in G by Xa

2) Now, all productions will be in one of the following 
two forms:
◼ A ➔ B1B2… Bk (k≥3) or A➔a

3) Replace each production of the form A ➔ B1B2B3… Bk by:

◼ A➔B1C1 C1➔B2C2 …   Ck-3➔Bk-2Ck-2 Ck-2➔Bk-1Bk

B1          C1

B2      C2
and so on…
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G:

S => AS | BABC

A => A1 | 0A1 | 01

B => 0B | 0

C => 1C | 1

X0 => 0

X1 => 1

S  => AS | BY1

Y1 => AY2

Y2 => BC

A => AX1 | X0Y3 | X0X1

Y3 => AX1

B => X0B | 0

C => X1C | 1

G in CNF:

All productions are of the form: A=>BC or A=>a
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Example #2

G:

1. E ➔ E+T | T*F | (E) | Ia | Ib | I0 | I1

2. T ➔ T*F | (E) | Ia | Ib | I0 | I1

3. F ➔ (E) | Ia | Ib | I0 | I1 

4. I ➔ a | b | Ia | Ib | I0 | I1

1. E ➔ EX+T | TX*F | X(EX) | IXa | IXb | IX0 | IX1

2. T ➔ TX*F | X(EX) | IXa | IXb | IX0 | IX1

3. F ➔ X(EX) | IXa | IXb | IX0 | IX1

4. I ➔ Xa | Xb | IXa | IXb | IX0 | IX1

5. X+ ➔ +

6. X* ➔ *

7. X+ ➔ +

8. X( ➔ (

9. …….

Step (1)

1. E ➔ EC1 | TC2 | X(C3 | IXa | IXb | IX0 | IX1

2. C1 ➔ X+T

3. C2 ➔ X*F

4. C3 ➔ EX)

5. T ➔ ..……. 

6. ….



29

Languages with 

◼ For languages that include , 

◼ Write down the rest of grammar in CNF 

◼ Then add production “S => ” at the end

G:

S => AS | BABC 

A => A1 | 0A1 | 01 | 

B => 0B | 0 | 

C => 1C | 1 | 

G in CNF:E.g., consider:

X0 => 0

X1 => 1

S  => AS | BY1

Y1 => AY2

Y2 => BC

A => AX1 | X0Y3 | X0X1

Y3 => AX1

B => X0B | 0

C => X1C | 1

| 
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Other Normal Forms

◼ Griebach Normal Form (GNF)

◼ All productions of the form 

A==>a 
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Return of the Pumping Lemma !!

Think of languages that cannot be CFL

== think of languages for which a stack will not be enough

e.g., the language of strings of the form  ww
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Why pumping lemma?

◼ A result that will be useful in proving 

languages that are not CFLs

◼ (just like we did for regular languages)

◼ But before we prove the pumping 

lemma for CFLs ….

◼ Let us first prove an important property 

about parse trees



33

The “parse tree theorem”

Given:

◼ Suppose we have a 
parse tree for a 
string w, according 
to a CNF grammar, 
G=(V,T,P,S)

◼ Let h be the height of 
the parse tree

Implies:

◼ |w| ≤ 2h-1

w

Parse tree for w

S  = A0

A1

A2

Ah-1

h 
= tree height

a

In other words, a CNF parse tree’s string yield (w)

can no longer be 2h-1

Observe that any parse tree generated by a CNF will be a 

binary tree, where all internal nodes have exactly two children 

(except those nodes connected to the leaves).
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Proof…The size of parse trees
Proof: (using induction on h)

Basis: h = 1
➔ Derivation will have to be 

“S➔a”  

➔ |w|= 1 = 21-1 .

Ind. Hyp: h = k-1
➔ |w|≤ 2k-2

Ind. Step: h = k
S will have exactly two children:  

S➔AB     

➔ Heights of A & B subtrees are 
at most h-1

➔ w = wA wB, where |wA| ≤ 2k-2

and |wB| ≤ 2k-2

➔ |w| ≤ 2k-1

w

Parse tree for w

S  = A0

h
= height

A B

wA wB

To show: |w| ≤ 2h-1
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Implication of the Parse Tree 

Theorem (assuming CNF)

Fact:

◼ If the height of a parse tree is h, then

◼ ==> |w| ≤ 2h-1

Implication:

◼ If |w| ≥ 2m, then  

◼ Its parse tree’s height is at least m+1
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The Pumping Lemma for CFLs

Let L be a CFL.

Then there exists a constant N, s.t., 

◼ if z L s.t. |z|≥N, then we can write 

z=uvwxy, such that:

1. |vwx| ≤ N

2. vx≠

3. For all k≥0: uvkwxky  L

Note: we are pumping in two places (v & x)
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Proof: Pumping Lemma for CFL

◼ If L=Φ or contains only , then the lemma is 
trivially satisfied (as it cannot be violated)

◼ For any other L which is a CFL: 
◼ Let G be a CNF grammar for L

◼ Let m = number of variables in G

◼ Choose N=2m.

◼ Pick any z  L s.t. |z|≥ N

➔ the parse tree for z should have a height ≥ m+1
(by the parse tree theorem)
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Parse tree for z

z

S  = A0

A1

A2

Ah-1

h ≥ m+1

z = uvwxy

S  = A0

Ai

Aj

h ≥ m+1

u

w

yv x

• Therefore, vx≠

h-m≤ i < j ≤ h

m+1

Ai = Aj

Meaning: 

Repetition in the 

last m+1 variables

Ah=a

+
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Extending the parse tree…

z = uvkwxky

S  = A0

Ai=Aj

Ai

h ≥ m+1

u

w

yv x

Replacing 

Aj with Ai

(k times)

v x

Ai

==> For all k≥0: uvkwxky L

z = uwy

S  = A0

Aj

u

w

y

Or, replacing 

Ai with Aj
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Proof contd..

• Also, since Ai’s subtree no taller than m+1

==> the string generated under Ai‘s subtree, which is 

vwx, cannot be longer than 2m (=N)

But, 2m =N

==> |vwx| ≤ N 

This completes the proof for the pumping lemma.
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Application of Pumping 

Lemma for CFLs

Example 1: L = {ambmcm | m>0 }

Claim: L is not a CFL

Proof:
◼ Let N <== P/L constant

◼ Pick z = aNbNcN

◼ Apply pumping lemma to z and show that there 
exists at least one other string constructed from z 
(obtained by pumping up or down) that is  L
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Proof contd…

◼ z = uvwxy

◼ As z = aNbNcN and |vwx| ≤ N and vx≠

◼ ==> v, x cannot contain all three symbols 

(a,b,c)

◼ ==>  we can pump up or pump down to build 

another string which is  L
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Example #2 for P/L application

◼ L = { ww | w is in {0,1}*}

◼ Show that L is not a CFL

◼ Try string z = 0N0N

◼ what happens?

◼ Try string z = 0N1N0N1N

◼ what happens?
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Example 3

◼ L = { 0k2
| k is any integer)

◼ Prove L is not a CFL using Pumping 

Lemma



Example 4

◼ L = {aibjck | i<j<k }

◼ Prove that L is not a CFL

45
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CFL Closure Properties
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Closure Property Results

◼ CFLs are closed under:
◼ Union

◼ Concatenation

◼ Kleene closure operator

◼ Substitution

◼ Homomorphism, inverse homomorphism

◼ reversal

◼ CFLs are not closed under:
◼ Intersection

◼ Difference

◼ Complementation

Note: Reg languages 

are closed

under 

these 

operators
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Strategy for Closure Property 

Proofs

◼ First prove “closure under substitution”

◼ Using the above result, prove other closure properties

◼ CFLs are closed under:
◼ Union

◼ Concatenation

◼ Kleene closure operator

◼ Substitution

◼ Homomorphism, inverse homomorphism

◼ Reversal 

Prove 

this first
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The Substitution operation

For each a  ∑, then let s(a) be a language

If w=a1a2…an  L, then: 
◼ s(w) = { x1x2 … }  s(L),   s.t., xi  s(ai)

Example:
◼ Let ∑={0,1}

◼ Let: s(0) = {anbn | n ≥1}, s(1) = {aa,bb}

◼ If w=01, s(w)=s(0).s(1)
◼ E.g., s(w) contains a1 b1 aa, a1 b1bb,

a2 b2 aa, a2 b2bb,
… and so on.

Note: s(L) can use 

a different alphabet
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CFLs are closed under 

Substitution

IF L is a CFL and a substititution defined 

on L, s(L), is s.t., s(a) is a CFL for every 

symbol a, THEN:

◼ s(L) is also a CFL

L

w1

w2

w3

w4

…

s(L)

s(L)

s(w1)

s(w2)

s(w3)

s(w4)
…

Note: each s(w) 

is itself a set of strings

What is s(L)?
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CFLs are closed under 

Substitution

◼ G=(V,T,P,S) : CFG for L

◼ Because every s(a) is a CFL, there is a CFG for each s(a)
◼ Let Ga = (Va,Ta,Pa,Sa) 

◼ Construct G’=(V’,T’,P’,S) for s(L)

◼ P’ consists of:
◼ The productions of P, but with every occurrence of terminal “a” in 

their bodies replaced by Sa. 

◼ All productions in any Pa, for any a  ∑

x1 x2 xn

…

S

Sa1
Sa2

San

Parse tree for G’:



Substitution of a CFL: 

example

◼ Let L = language of binary palindromes s.t., substitutions for 0 

and 1 are defined as follows:

◼ s(0) = {anbn | n ≥1}, s(1) = {xx,yy}

◼ Prove that s(L) is also a CFL.

52

CFG for L:

S=> 0S0|1S1|

CFG for s(0):

S0=> aS0b | ab

CFG for s(1):

S1=> xx | yy

Therefore, CFG for s(L):

S=> S0SS0 | S1 S S1 |

S0=> aS0b | ab

S1=> xx | yy
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CFLs are closed under union

Let L1 and L2 be CFLs

To show: L2 U L2 is also a CFL

◼ Make a new language:
◼ Lnew = {a,b} s.t., s(a) = L1 and s(b) = L2

==> s(Lnew) == same as == L1 U L2

◼ A more direct, alternative proof
◼ Let S1 and S2 be the starting variables of the 

grammars for L1 and L2

◼ Then, Snew => S1 | S2

Let us show by using the result of Substitution
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CFLs are closed under 

concatenation

◼ Let L1 and L2 be CFLs

◼ Make Lnew= {ab} s.t., 
s(a) = L1 and s(b)= L2

==> L1 L2 = s(Lnew) 

◼ A proof without using substitution?

Let us show by using the result of Substitution
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CFLs are closed under 

Kleene Closure

◼ Let L be a CFL

◼ Let Lnew = {a}* and s(a) = L1

◼ Then, L* = s(Lnew)
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CFLs are closed under 

Reversal

◼ Let L be a CFL, with grammar 

G=(V,T,P,S)

◼ For LR, construct GR=(V,T,PR,S) s.t.,

◼ If A==>  is in P, then:

◼ A==> R is in PR

◼ (that is, reverse every production)

We won’t use substitution to prove this result
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CFLs are not closed under 

Intersection

◼ Existential proof:
◼ L1 = {0n1n2i | n≥1,i≥1}

◼ L2 = {0i1n2n | n≥1,i≥1}

◼ Both L1 and L2 are CFLs
◼ Grammars?

◼ But L1  L2 cannot be a CFL
◼ Why?

◼ We have an example, where intersection is 
not closed. 

◼ Therefore, CFLs are not closed under 
intersection

Some negative closure results
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CFLs are not closed under 

complementation

◼ Follows from the fact that CFLs are not 

closed under intersection

◼ L1  L2 = L1 U L2 

Some negative closure results

Logic: if CFLs were to be closed under complementation 

➔ the whole right hand side becomes a CFL (because 

CFL is closed for union)

➔ the left hand side (intersection) is also a CFL

➔ but we just showed CFLs are 

NOT closed under intersection!

➔ CFLs cannot be closed under complementation.
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CFLs are not closed under 

difference

◼ Follows from the fact that CFLs are not 
closed under complementation

◼ Because, if CFLs are closed under 
difference, then:

◼ L  = ∑* - L

◼ So L has to be a CFL too

◼ Contradiction

Some negative closure results



60

Decision Properties

◼ Emptiness test

◼ Generating test

◼ Reachability test

◼ Membership test

◼ PDA acceptance 
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“Undecidable” problems for 

CFL

◼ Is a given CFG G ambiguous?

◼ Is a given CFL inherently ambiguous?

◼ Is the intersection of two CFLs empty?

◼ Are two CFLs the same?

◼ Is a given L(G) equal to ∑*?
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Summary

◼ Normal Forms
◼ Chomsky Normal Form

◼ Griebach Normal Form

◼ Useful in proroving P/L

◼ Pumping Lemma for CFLs
◼ Main difference: z=uviwxiy

◼ Closure properties
◼ Closed under: union, concatentation, reversal, Kleen  

closure, homomorphism, substitution

◼ Not closed under: intersection, complementation, 
difference


