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Basic k-nearest neighbor classification

* Training method:
— Save the training examples

* At prediction time:

— Find the k training examples (x,,y,),...(X,,y,) that
are closest to the test example x

— Predict the most frequent class among those y;'s.

 Example:


http://cgm.cs.mcgill.ca/~soss/cs644/projects/simard/

What is the decision boundary?

Voronoi diagram




Convergence of 1-NN
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Basic k-nearest neighbor classification

* Training method:
— Save the training examples

« At prediction time:

— Find the k training examples (x,,y,),...(X,Y,) that
are closest to the test example x

— Predict the most frequent class among those y;'s.

* |Improvements:
— Weighting examples from the neighborhood
— Measuring “closeness’

— Finding “close” examples in a large training set
quickly



K-NN and irrelevant features
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K-NN and irrelevant features
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K-NN and irrelevant features




Ways of rescaling for KNN
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Ways of rescaling for KNN

Dot product: -
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Cosine distance:
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TFIDF weights for text: for doc j, feature i: x;=tf;; * idf; :
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Combining distances

to neighbors

Standard KNN: = arg max , C(y, Neighbors(x))

C(y,D') =]

(x',y"h)eD":y'=y}

Distance-weighted KNN:

y =argmax , C(y, Neighbors(x))

C(y,D')= D (SIM(x,x'))
{(x,y)eD"y'=y}
C(y,DY)=1 - |]a-SIM(x,x"))

{(x,yheD"y'=y}

SIM (x,x')=1-A(x,x")
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Computing KNN: pros and cons

e Storage: all training examples are saved in memory
— A decision tree or linear classifier is much smaller

« Time: to classify x, you need to loop over all training
examples (x’,y’) to compute distance between x and
X',

— However, you get predictions for every class y
 KNN is nice when there are many many classes

— Actually, there are some tricks to speed this up...especially
when data is sparse (e.g., text)



Efficiently implementing KNN (for text)
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Fig. 5. A graphical representation of the k-NN method. Node d; has weight equal to 1. Weights
How from left to right and get multiplied by the weights of the edges through which they How:
weights incoming into the same node are summed together. The weight that node ¢; receives as
a result of the process is the value of C'SV;(d; ).
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Tricks with fast KNN

K-means using r-NN
1. Pick k points ¢,=x,,....,c,=X, as centers
2. For each x, find D,=Neighborhood(x;)
3. Foreach x; let c=mean(D,)
4. Go to step 2....
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THANK YOU



