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Potential Difference =Voltage=EMF

In a battery, a series of chemical
reactions occur in which electrons
are transferred from one terminal to
another. There is a potential
difference (voltage) between these

g poles.

— The maximum potential difference a
Voliage = Potental Difierence =EmE o source can have is called the
V=AV=¢ electromotive force or (EMF), €. The
term isn't actually a force, simply
the amount of energy per charge
(J/CorV)



All electric circuits have three main parts

1. A source of energy
2. Aclosed path
3. A device which uses the energy

If ANY part of the circuit is open the device will not work!

2. Closed path (wire)

3. Device
(lightbulb)

1. Energy
source @
(battery) ||




Electricity can be symbolic

Circuits are very similar to water flowing through a pipe

A pump basically works on TWO
IMPORTANT PRINCIPLES concerningits
flow

 There is a PRESSURE DIFFERENCE
where the flow begins and ends

« A certain AMOUNT of flow passes each
SECOND.

A circuit basically works on TWO
IMPORTANT PRINCIPLES

« Thereis a "POTENTIAL DIFFERENCE
aka VOLTAGE" from where the charge
begins to where it ends

« The AMOUNT of CHARGE that flows

PER SECOND is called CURRENT,



Current

Current is defined as the rate at which charge
flows through a surface.

The current Is e same direction as
of positive charge (for this course)

Note: The“|” stands >
for intensity R R




DC = Direct Current - current flows in one direction
Example: Battery

Direct Current:

Current
ohe way flow

B

Time

AC = Alternating Current- current reverses direction many times per second.
This suggests that AC devices turn OFFand
ON. Example: Wall outlet (progress energy)
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Ohm’s Law

“The voltage (potential difference, emf) is directly relatedto

the current, when the resistance isconstant”

AV a |
R = constant  of proportion

R = Resistance

AV = 1R

g =1R

ality

Since R=AV/I, the resistance is the

SLOPE of a AV vs. | graph
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Electrical resistance

resistance of light bulb
filament is high so a
lot of heat and light
are produced as the
4 electricity forces its
way through

resistance
circuit wire is
quite low

the light bulb
is a resistor

The unit for resistanceis
the OHM, Q



Electrical POWER

We have already learned that POWER is the rate at which work (enerFy)
is done. Circuits that are a prime example of this as batteries onlylast
for a certain amount of time AND we get charged an energy bill each
mon{cﬁr baﬁed on the amount of energy we used over the course of a
month. ..aka

High voltage
transmission lines  Transmission substation

Power plant

Power
substation




POWER

It is interesting to see how certain electrical
variables can be used to get POWER. Let's take
Voltage and Current for example.




Other useful power formulas

These formulas can also
be used! They are
simply derivations of
the POWER formula
with different versions
of Ohm's law
substituted in.




Ways to Wire Circuits

There are 2 basic ways to wire a circuit. Keep in mind that
a resistor could be ANYTHING ( bulb, toaster, ceramic
material. . .etc)

Series — One after another
Parallel — between a set of junctions and
parallel to each other




Schematic Symbols

schematic symbol. Specify voltage amplitude.
An arrow thru the symbol denotes a variable

DC voltage source or battery
T voltage source (you must set the value manually)

‘ Resistance must be specified.
Resistor An arrow thru the symbol denotes a variable
resistor (you set the value manually)

Ammeter
Voltmeter /A\
S

— +—  Switch
= |+— Battery

—@— Light Bulb

For the battery symbol, the
LONG line is considered to be
the POSITIVE terminal and the
SHORT line , NEGATIVE.

The VOLTMETER and AMMETER
are special devices you place IN
or AROUND the circuit to
measure the VOLTAGE and
CURRENT.



The Voltmeter & Ammeter

@ v Ammeter  The voltmeter and ammeter cannot be
oltmeter n ] _ _ _

L% just placed anywhere in the circuit. They
Current goes THROUGH the ammeter ~ Must be used according to their

DEFINITION.
Since a voltmeter measures voltage or

\mmeter POTENTIAL DIFFERENCE it must be
4®7 placed ACROSS the device you want
to measure. That way you can measure

battery the CHANGE on either side of the
or _L_ R “ Cv)\ device.
cell Voltmeter is drawn ACROSS the resistor
; voltmeter
rheostat Since the ammeter

measures the current or

FLOW it must be placedin
such a way as the charges
go THROUGH the device.



Simple Circuit

When you are drawing a

circuit it may be a wise
thing to start by drawing
the battery first, then
follow along the IooE
(closed) starting wit
positive and drawing what
you see.



Series Circuit

In in series circuit, the resistors

are wired one after another. 1
Since they are all part of the il
SAME LOOP they each
experience the SAME
(series )Total
V

('series )Total

AMOUNT of current. In figure,
however, you see that they all
exist BETWEEN the terminals
of the battery, meaning they
SHARE the potential (voltage).



Series Circuit

| -1 =1 =1 | —
- - - ] 1
|| LA

(series ) Total 1 2 3 D
V +V +V [’
=V + +
v (series )Total 1 2 3 o Rz Ra
Sl B | e

As the current goes through the circuit, the charges must USE ENERGY to get

through the resistor. So each individual resistor will get its own individual potential

voltage). We call this VOLTAGE DROP.

Vv =V +V +V ; AV = IR

(series )Total 1 2 3

(1.R_) - IR +I R +IR Note: They may use the
T T 7 series 171 2 2 3 3 terms —effectivell or

. —equivalentlto mean

=R, + R, + R, TOTAL!

series



Example

A series circuit is shown to the left.

12 v a) What is the total resistance?
Ll R(series) =1+ 2 + 3 =6Q
10 b) What is the total current?
£ 20 AV=IR  12=1(6) |=2A
A c) What is the current across EACH
30 resistor?

They EACH get 2 amps!

d) What is the voltage drop across
each resistor?( Apply Ohm's law to
each resistor separately)

Vig=(2)1)=2V  V3,=(2)(3)= 6V V20=(2)(2)= 4V

Notice that the individual VOLTAGE DROPS add up to the TOTAL!!



Parallel Circuit

In a parallel circuit, we have
multiple loops. So the
current splits up among the
loops with the individual
loop currents adding to the
total current

resistor

\

Junctions

It is important to understand that parallel
circuits will all have some position
where the current splits and comes back
together. We call these JUNCTIONS.

I(paraIIeI)TotaI =1 41_ I+ Iz

Regarding  Junctions

Fn=1our
The current going IN to a junction will
always equal the current going OUT of a

junction.



Parallel Circuit

resistor

This junction
touches the
POSITIVE
terminal

This junction
touches the
NEGATIVE

terminal

Notice that the JUNCTIONS both touch the
POSTIVE and NEGATIVE terminals of the
battery. That means you have the SAME
potential difference down EACH individual
branch of the parallel circuit. This means
that the individual voltages drops are equal.

=V=V=V
| tal 1 2

=l+1+1;AV=IR
) Total 1 2 3



AV

50

= IR

8
- —=1.6A
5

7Q

Example

Tothe left is an example of a parallel circuit.

a) What is the total resistance?

1 1 1 1
— = —+ —+ —

R, 5 7 9

1 1
—=0.454 > R, = 2.200
R 0.454

p

b) What is the total current?
) 8=1(R)= 3.64A

8 V each!
c) What is the voltage across EACH resistor?

d) What is the current drop across eachresistor?
(Apply Ohm's law to each resistor separately)

8 8 :
_ _ _114A _ " _090A !\onqe that the
individual currents

- log
7 9
ADD to the total.



Compound (Complex) Circuits

Many times you will have series and parallel in the SAME circuit.

Solve this type of circuit

800
—+ 1000 500 from the inside out.

WHAT IS THE TOTAL

/ RESISTANCE?

1 1 1

- +—; R, =33.30
R, 100 50

R.,=80+33.3=113.3 Q



Compound (Complex) Circuits

—'V\W 1 1 1
800 = +—; R, =33.3Q
10042 S04
R.=80+33.3=113.3Q

Suppose the potential difference (voltage) is equal to 120V. What is thetotal
current?

AV =1 R
120 = 1_(113.3)

.= 1.06A

AV =1 R
80 Q 800800

V., =(1.06)(80)

What is the VOLTAGE DROP across the 80Q2 resistor?v.,,.-
84.8V



Compound (Complex) Circuits

R. =113 .3Q

V., =120 V 800

| =1.06 A T - 1000 500

Vg, = 84.8V

| —1.06 A What is the current acrossthe

80 Q

100Q2 and 50Q) resistor?

What is the VOLTAGE DROP across |
the 100Q2 and 50Q2 resistor? T (parallel )

V =V =V IT(series)

o 2&3
T ( parallel ) 2 3
V =V +V I .
T (series ) 1 2&3 1000 \
Add to

120 =84.8+V .

:I2+I3

1.06A

2&3



UNIT II

CIRCUIT ANALYSIS



Star-Delta Transformation

A
Rz R3
Ry
C
B O— .

(a) Star (Y) section | (b) Delta or mesh (A) section

- F RN W AR




Equivalence

* Equivalence can be found on the basis that the resistance
between any pair of terminals in the two circuits have to be
the same, when the third terminal is left open.



A O

O o

8 O
{(5H) Delta or mesh (A) section

* First take delta connection: between A and C,

there are two parallel paths, one having a
resistance of R, and other having a resistance

of ( R;+R;)
Hence resistance between terminal A and C is
= R,.(R;+R3)/[Ry+( Ry+R3)]




e Now take the star connection

A O

The resistance between the same terminalA and C is (Rp*+R()
Since terminal resistance have to be same so we musthave
(RatRc) = R2.(R1+R3)/[Ry+( R1+R3)] (1)

Similarly for terminals A and B, B and C, we can have the following
expression

(RatRg) = R3.(R1+Ry)/[R3+(R1+Ry)]  (2)
(Re+Rc) = R1.(Ry+R3)/[R1+( R+R3)] (3)



DELTA to STAR

Now subtracting 2 from 1 and adding the result to 3, we will get the following values
for R;,R,and Rs.

.. B = g R;eRLR
" Ri+Ry Ry e

- R.R,
R,+R;+ R,

Ry

Rc

How to remember?

Resistance of each arm of star is given by the product of the
resistance of the two delta sides that meet at its ends divided by
the sum of the three delta resistance



STAR to DELTA

Multiplying 1 and 2, 2 and 3, 3 and 1 and adding them together and
simplifying, we will have the following result.

R — R,Rp+ RzR-.+ R-R,
1 RA
R _ RARB+RBRC+RCRA
9 =
Ry
R — RARB T RBRC +- RCRA
3 RC

How to remember: The equivalent delta resistance between any two point is
given by the product of resistance taken two at a time divided by the opposite
resistance in the star configuration.



Problem

* A delta-section of resistors is given in figure.
Convert this into an equivalent star-section.

Rc Re
-08 C
Ra
-0 AOC 9
(b)
Ans R,=3€Q; R;,=10QQ; R. =15 Q.




Problem

The figure shows a
network. The number
on each branch
represents the value of
resistance in ohms.
Find the resistance
between the points E
and F.




Solution




Ans. : 5.6 Q)




Problem

[JFind the current drawn from the 5 volt battery inthe
network shown in figure.




Solution:













5V 30

32/15 0

Ans. : 0.974 A



Mesh Analysis

Mesh analysis applies KVL to find unknown currents.

It is only applicable to planar circuits (a circuit that
can be drawn on a plane with no branches crossing
each other).

A mesh is a loop that does not contain any other
loops.

The current through a mesh is known as the mesh
current.

Assume for simplicity that the circuit contains only
voltage sources.



Mesh Analysis Steps

1. Assign mesh currents iy, I,, I3, ...I, to the |l
meshes,

2. Apply KVL to each of the | meshes and use

Ohm'’s law to express the voltages in terms
of the mesh currents,

3. Solve the | resulting simultaneous equations
to find the mesh currents.



- +
R3 V3 i3 bC CD V31@ V_4 R 4
+

D

Rg

Number of nodes, n = 7 Number of loops, | =

Number of branches, b= 10 l=b-n+1

44



R, R,
Example —— VNN
+ V; - + V, -
n . +
DC<>V52 Iy ' R7 l
Vs - + Vg -
AN AN
Rs Re
R - +
3 V3 @ DC< W@ Va
Apply KVL to eachmesh * -V 4+
Mesh 1: -V +v +v —-v =0 Rs
S, 1 7 5
Mesh 2: V, -V, -V, =0
Mesh 3: Vo +Vv, +Vv, =0

Mesh 4: V,+vg -V, +v, =0




Meshl:  _v_ 4+v +v —v, =0 [ Vv oo
52 > + 0V, - + V, -
Mesh 2 ’ . '
esh 2: _ oC ' |
Ve =0 sV bR
+ V5 - + V. -
Mesh 3: v, +v_+v, =0 AN AN
v 0 Rs Re
Mesh 4: V. +V - +V = -
8 . 6 R _ + -
) i 3V, @ DC<>V51© Ve
Express the voltage in terms of the mesh +
currents: - Vg
Mesh 1 V. +iR +(i —i)R Rs
esh 1. — — T _
32+I1 1+(I1 Iz) 7+(I1 I3)R5_O
Mesh 2: ' I — 1 i - _
I2R2+(|2 I4)R6+(|2_5)R7_0

Mesh 3: (I —I)R +V +1 R =0
3 1 5 S 3 3

1

Mesh 4: i,R,+i,R; -V, + (i,-1,)R, =0




Meshl: -V +iR + (i -1 )R +(i —1)R =0
S 1 1 1 2 7 1 3 5

2

Mesh 2: i2R2+(i2_'4)R6+('2—il)R7=0

Mesh 3: (i —il)R +V +1 R =0
3 5 S 3 3

1

Mesh 4: LR, +1,R, _Vsl+(i4_i2)R6:0
Mesh 1. (R1+R5+R7)i1_R7i2 - R =V,
Mesh 2: _R7i+(Rz+Re+R7)iz_R6i4 =0
MeshB _R5i1 + (R3 + R5)i3 = _VS

Mesh 4: _R6I2+(R4+R6+R8)I4:V

S1



Mesh 1:

Mesh 2:

Mesh 3:

Mesh 4:

(R, + R, R7)I1 - R7|2 - RgL :V52

-R,i +(R,+R,+R JI_—-R1 =0

-Ri +(R +R)I ==V
51 3 5 3

-R1 +(R +R +R)I =V
6 2 4 6 8 4

6 4

S1

0 R,+R¢+R;)Li,)




(R, + R, +R, -R, - R, 0 YO0
-R. R,+R .+R . 0 -R. i

- R 0 R +R 0 [

5 3 5 3

RI=vV
R is an | x | symmetric resistance matrix

| isalxlvector of mesh currents

\V/ is a vector of voltages representing —koanlvoltages




Writing the Mesh Equations by Inspection

|(R1+R+B . - R, R, 0 \H(ul\' l(Vsz
| _R R2+R6+R7 O _RB |||2|_| 0
I -R, 0 R+ R , 0 :||i3: :—vsl
L 0 R, 0 R, + R+ R [V,

-The matrix R is symmetric, r; = ry and all of the off-diagonal terms are negative or
zero.

The r terms are the sum of all resistances in meshKk.

The rterms are the negative sum of the resistances common to BOTH meshk
and meshj.

The v, (the kthcomponent of the vector v) = the algebraic sum of the independent
voltages in mesh k, with voltage rises taken as positive.



MATLAB Solution of Mesh Equations

: Y
(R,+R,+R, - R, -R, 0 N0 (Vo)
-R. R,+R,+R, 0 -R. || 0
- R, 0 R, + R, 0 i -V,
L 0 - Rﬁ 0 R, +R¢+Ry Ui, ) V.,
RiI=vV
~1

51



Test with numbers —Ww—
2Q) 3Q
D{gw JO4Q R, )
1Q 20
R, R
Ry~ 30 @ Dc©zv® 40 - R,
10
Ry
(2+4+ 1 —4 -1 0 (i) [ 4)
—4 3+2+4 0 —2 i2 N 0
-1 0 3+1 0 i -2 |
. 0 -2 0  2+4+1)i,) | 2 )

52



Test with numbers

(2+4+ 1
4
-1

L 0

0 (i) [ 4)

2 o

0 il 12l

2+4+1)\i4)| \2)|
0 (i) [ 4)
—2|i2|: 0
0 Ii3 —2 |
), ) L2



Common symbols for indicating a reference node,
(a) common ground, (b) ground, (c) chassis.

— /
(a) (b)

f

54



1. Reference Node

500Q2 500Q2

@ 3= 3e IO

— —L — )
l = J

The reference node is called the ground node
where V=0



2. Node Voltages

V,, V,, and V;are unknowns for which we solve
using KCL



Steps of Nodal Analysis

3. Apply KCL to each node other than the reference
node; express currents in terms of node voltages.



Currents and Node Voltages

v. 500Q

VvV, -V

1 2

500 Q —



3. KCL at Node 1

500Q2

VA V,
A
I V,-V V
1 () SOOQ Il B 1 : " 1
500 Q 500 Q




3. KCL at Node 2

5000 5000 v,

1kQ

Vz_Vl+ V2 +V2_V3 ~0

= 500 Q 1k O 500 Q




3. KCL at Node 3

5000 (‘) , vV, -V,
500 Q

_|_

V

3

500 Q

|
2



Steps of Nodal Analysis

4. Solve the resulting system of linear equations for
the nodal voltages.



4. Summing Circuit Solution

500Q2 500Q2

> 5000 Vv 1kQ 500Q2 <

Solution: V=1671,+ 1671,

N




Typical circuit for nodal analysis

!
2 12
v o—
: 4 2 2 R 2
v v
ANVVN— [ . )
+ + +ll +l3

64
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>l =1+ 4+ —
Rl RZ
vV, =V Vv
1 2 2
I, + =
R2 R3
=1 -1 =Gv +G (v —vVv )
1 2 11 2 1 2
|, =-G,(v,—-Vv,)+G,v,

[G,+G, —Gé Hq{h
_ + V
L -6, 6,72, Y,




* Calculus the node voltage in the circuit shown

in Fig. 3 (2 .

4@_

4 Q o)




e Atnodel

PSUT

5A
fg)
*’1=5\:_/ ?11=5
V) ——WWW
—
P

(b)

68



e At node?2

5A
i)
*ll=5v ?llz
V) ———WWW
o
T
20 6Q§ () 10A

(b)

69



* |n matrix form:

1 1

__I__

2 4
1

A

1
A

1 1

_|_
6 4

1
|

|
|
|




Practice




[ IDetermine the voltage at the nodes in Fig. below

40 40
AW AW
. 1 . . ll
- 20 2 8Q ti 20 m_’isg_’i¢
[ ——W AW 3 vy AW A 2
— —
3ab] i |4

12



At node 1,

40
AW
i 20 a % B0 B to
" MM AW vy
sat| i |4
3a () 40 b 2

73



e At node 2

X

=1,+1

40
AW
i 20 o 2 80 B t
7y —YYVN A v3
— —
sat| i |43
3a () 40 b 2
(b)

74



e At node 3

PSUT

75



 |n matrix form:




3.3 Nodal Analysis with Voltage
Sources

[]Case 1: The voltage source is connected
between a nonreference node and the
reference node: The nonreference node
voltage is equal to the magnitude of voltage
source and the number of unknown
nonreference nodes is reduced by one.

ICase 2: The voltage source is connected
between two nonreferenced nodes: a
generalized node (supernode) is formed.



5.5 NOQal Analysis with vVoltage

Sources
A circuit with a supernode.
4 €
MVYWV 7 Supernode
....... /s
5V ek
20 :
9 —'\/\/\/\/_> 2 &) Y3

PSUT



] A supernode is formed by enclosing a

(dependent or independent) voltage source
connected between two nonreference nodes
and any elements connected in parallel with it.

[ IThe required two equations for regulating the
two nonreference node voltages are obtained
by the KCL of the supernode and the

relationship of node voltages due to the
voltage source.



Example 3.3

* For the circuit shown in Fig. 3.9, find the

node voltages.
10

U1 Q Uy
1
N>

80



Find the node voltages in the circuit below.

-—
"

———
-

30
AN
,,,,,, - +vx_
L™
a1 oo
</

-

-
-—
T —— - -

81



e At suopernode 1-2,

82



e At supernode 3-4,

83



3.4 Mesh Analysis

* Mesh analysis: another procedure for
analyzing circuits, applicable to planar circuit.

A Mesh is aloop which does not contain any
other loops within it



(a) A Planar circuit with crossing branches,

(b) The same circuit redrawn with no crossing branches.

1 A

)
@

2Q
MWW

4 Q

8 Q 7 Q

(a)

sa%

1 Q

8

(b)

85



A nonplanar circuit.

5.8
4 Q

sa(d)

13 Q

12 Q
11 Q

1 Q

7 Q 2.8

3Q

10 Q

9Q
8 2

86



 Steps to Determine Mesh Currents:

Assign mesh currents iy, I,, .., I,to the n meshes.

2. Apply KVL to each of the n meshes. Use Ohm'’s
law to express the voltages in terms of the mesh
currents.

3. Solve the resulting n simultaneous equations to
get the mesh currents.



Fig. 3.17

A circuit with two meshes.

I Ry b R,
d — b —_—
AVAVAYAY AVAVAYAY
P
I

@ M sl ™M)




* Apply KVL to each mesh. For mesh 1,
-V, +RIL+R_(I,-1,)=0

(R, + R,)i, — R,i, =V,
* For mesh 2,
R, +V, +R,(I,-1)=0
-R1 +(R +R)I ==V
31 2 3 2

2



 Solve for the mesh currents.
Ry IRAS
_ R ||li |T]-=
L -R, R, PR v,

e Usel for a mesh current and | for a branch
, . . t




* Find the branch current |, I,, and |5 using

mesh analvsils.
|

[

50 = GL)
l
I3
10 Q

15V i) G)

10V

240

91



[ IFor mesh 1,
- 15 +5i1+10(i1—i2)+10 =0

3i, — 2i, =1

[ IFor mesh 2,
6i, + 4i, +10 (i —i)—10 =0

i = 2i -1
[ /We can find I; and I, by substitution method
or Cramersrule. Then, - i 1 =i, 1 =i -]
1 1’

2 2 3 1 2




_JUse mesh analysis to find the current |in the
circuit.

93



* Apply KVL to each mesh. For mesh 1,
~24 +10 (i, —i,)+12 (i, —i,) =0

11i, — 5i, — 6i, =12

* For mesh 2,
240, + 4(i, —1)+10(1 —j)=0

-51 +191 -21 =0
1 2 3




' IFor mesh 3, Al 412~ i)+ 4 —i)=0

At node A I,=1,-1,,
4(i,—i,)+12(i,—i,)+4(i,—i,)=0
—il—i2+2i3:0

IIn matrix from become

(11 -5 -61[Q, ] [12]
-5 19 -21li l=lol

“1o-1 2 |liy] [ol]

we can calculus iy, i, and i; by Cramer’s rule,
and find |,.




5.0 Iviesn AnalysSis with current

Sources
A circuit with a current source.
. 3Q
—AVVWY AAYAAY,

10V<i> @

60 @ O

96



NETWORK TOPOLOGY



Graph Theory in Circuit Analysis

Suppose we wish to find the node voltages of the circuit below.

We know how to do this by hand.

For large-scale circuits, we may wish to do this via a computer
simulation (i.e. PSpice). We will need to express this circuit in
a standard form for input to the program.



Graph Theory in Circuit Analysis

@g

AVAYAY
4 5

Whether the circuit is input via a GUI or as a text file, at some
level the circuit will be represented as a graph, with elements
as edges and nodes as nodes.

For example, when entering a circuit into PSpice via a text file,
we number each node, and specify each element (edge) in the
circuit with its value and endpoints.



Graph of a Circuit

Here is a graph of the circuit. It is simply the circuit without elements.

We refer to the lines above as edges (and the nodes are nodes).

The graph provides connectivity information. To actually solve the
circuit using this graph, the types of elements forming the edges would
need to be provided.



Trees and Co-Trees

Atree is defined as any set of edges in a graph thattouches
every node without forming any closed paths.

Also known as Hamiltonian path!

Each tree has a co-tree, which is the set of edges not in the tree.



Cut Set

A cut set is a minimal set of edges that, when broken, breaks the
graph into two completely separate parts (two groups of nodes.

Minimal means that a cut set cannot contain another smaller cut
set that would break the graph into the same two parts.



Fundamental Cut Set

a

Suppose | am given a tree.

A fundamental cut set w.r.t. that tree Is a cut set that only
contains one branch of the tree.

There may be many fundamental cut sets w.r.t. a given tree.



Finding Fundamental Cut Sets Systematically

1. Redraw the graph with the tree in a straight line.
2. For each tree edge, form its fundamental cut set as follows:
2a) that tree edge is a member of this fundamental cut set
2b) cut that edge...what two groups of nodes are separated?
2c¢) the fundamental cut set also contains all edges in the co-tree
that connect these two groups.




Notes

B All of this can be done computationally.
B Graph algorithms
B Linear equation solution

B This algorithm shows why nodal analysis always works: you
get n-1 independent linear equations in n-1 unknowns.

B The fundamental cut sets ensure independence ofthe
equations—unless the circuit has impossible elements.

B Each fundamental cut set contains a unigue element (edge)
from the tree. So each KCL equation provides new info.

B The elements themselves could destroy the independence
(redundant dependent source, shorted voltage source...)
but this won't happen in real life circuits.



Example

0.75|
40 Q *
+
120v( 5Q§

Find the node voltages using the graph method.

Circuit from Nilsson's Electric Circuits,Addison-Wesley, 1993.



UNIT -1l

SINGLE PHASE AC CIRCUITS AND ANALYSIS



Objectives: After completing this
module, you should be able to:

o Describe the sinusoidiall warigtiiom im = currart ard voitags, and
calculate their =ifactive values.

Write and apply equatiions fior caliwleffimg) e rwluctive 2nd
capacitive reactances fior imductons and! capacitions im am aT diauitt.

Describe, with didgrams 1td e@uRiNS, the phase reiationslipddbr
giFeuits €ORAIRING resistance, casacitance, M inductance,



Alternating Currents

An alternating current-such as that:produced by a generator has no

direction in the sense that direct current-has. 1he magnitudes vary
sinusoidally: with time as given by:

AC-voltage and E .
current

I
E=E,xSIinO
| = 15 SIN 0




Rotating Vector Description

E=E,xSINO

800 2700 3600

450 900 1350

Radius = E, .




Example 1: For a particular device, the house ac voltage

is and the ac current is . What are their
values?
V= 170 V

.= 14.14 A ‘

+170Vito: -170V
141 Ate =14.1 A




Pure Resistance in AC Circuits

?‘:WW\T
Q

Y
a.C. Source

Ohm’s law: V7= [,sR




AC and Inductors

/ )
7 Inductor I / e e
0.631 Current Rise Current Decay
0.371
= Tis 7 T Time, ¢

V /
leads | (peaks before
\/oltage and current-are -out-ofiphase




A Pure Inductor in AC Circuit

L Vinax |- oltage
i L N
- —Current
Qv
d.C.

The reactance may be defined as tihe nonrasistive oo tion too theeffoowaffamc
current.



Inductive Reactance

The pzclk 2mif induced by a changjing /
current provides opjposition to
current, called induciive reactance X,.

@,
d.C.

Such losses are t=muoorary, owveyasrsiicecthieeconrent changes direction,
periodically re-supplijing emengyy so thrait no neit pawerr s |asttimane: cyde.

Inductive reactance X, is a flumatiomn off tetth thee ircluctzcaandithes
frecjuericy of the ac current.



Calculating Inductive Reactance

L In ive R n

X, =2z fL UnitistheQ

AN\
Ny : . -
a\/_c_ Ohm's law: V =1X

The voltzage reading / in the above ciifeuilt att the instiant the :1c ewimenttis; /
can be found from the inductanceim H and the frequencyim iz,

VL — i(272' fL) Ohm’s law: V, = L#X]




Example 2: A coil having an inductance of is

connected to a ) ac source. Neglecting
resistance, what is the effective current through the
coil?
Reactance: X, = 2nfL L =06H

X, =2n(&0 ltz)(@HH)

A =226 Q )

120 V,60h'z/

fr=0.531A

Show that the peak current is Z,,,, =078DAA



AC and Capacitance

g  Capacitor / Capacitor
Qmax -[ ______________________________

0.651 Current Decay

0371 |




A Pure Capacitor in AC Circuit

C

)/oltage

back.emf




Capacitive Reactance

Eriergy gains and losses ane alko
rernporary for capaditors due to the:

C
| |
constantly changing ac currrent. % ‘ : I
O,
a.C.

No ret povver is lost in a complete cyde, everm tiaugih e capaitonr diss prowde
nonresistive oppasition (r=actances) to tie filow off ac cumentt.

Capacitive reactance X.is affected] by detthttiee capacitanceamddithiee
frecjuercy of the ac current.



Calculating Inductive Reactance

Capacitive Reactance:
1

X = UnitistheQ

© 2zfC
Ohm's law: V. =1iX_

The voltage reading / in the above ciifeuilt att the instiant the :1c ewimenttis; /
can be found from the inductance im Fand the frequencyim iz,

V = Ohm’s law: V= X,




Series LRC Circuits

l—@j Series ac circuit
Q) “)
ek.J \/
/ R C
| |
A

Inductor Z, - capacitor: G resistor R
Seres anacsource




Calculating Total Source Voltage

Treatiing as wedions;, we fiimd:

2 2
V. = \/VR +(V, -V,)

V. -V
tang = ———
V

R

Now recall thait: Vi, = ity Y, =Xyl V.=V,

Substitution into the above vaollizage equatiom gjves::

: 2 _ 2
va :|\/R +(X =X )




Impedance in an AC Circuit

g 2 2
V. =|\/R (X, - X,)

Irnpadance Z is defined:

2 2
zz\/R (X, - X.)

Ohm's law for ac cumrentt aind impedkmces:: _ . V.
V_=1Z or |1=—
Z

The impedance is the combined opposition to ac current consisting of both
resistance and reactance.




Example 4: Find the effective current and the phase
angle for the previous example.

20 Q0 X =332 £ R=000;,272=1220

)

\(I —_

/

[NS)

-

0.5H

L= 0.985 A ‘ @ 8 uF 1

120V _T
Next we find the phase angle: @ ’VWVW‘

X, — Xe=226-332 =-106 Q

R=60Q tan ¢ = L2

R

Congtinuead ., . .




Example 4 (Cont.): Find the for the previous

example.

X =Xe=226-332=-106 Q

R=60Q tan¢= L

¢ = -60.50

nNEgative
capacitive




Resonant Frequency

zz\/R2+(xL—xC)2=R




Example 5: Find the resonant frequency for the
previous circuit example: L=.5H, C=8 uF

1 Resonance X; =X

" 2z4fLC 0.5 H

D e 1

120V _T
Resonant f, =79.6 Hz ? Hz 60 O
At resonant frequency, there is zero reactance ( ) and the circuit has

a phase angle of zero.



Power in an AC Circuit

In terms of ac voltage:

P =V cos ¢

1
1
1
1
1
1
1
1
==

In terms of the resistance R:

P =R

The fraction Cos () is known as tihe nower factor.



Example 6: What is the average power loss for the
previous example: V=120V, $ =-60.5°9, 1=90.5A, andR

P = PR = (0.0905 A)2(60 Q)

= 60Q).

‘ Average P= 0.491 W

The power factor is: Cos 60.5"

‘ Cos ¢ = 0.492 or 49.2%

Resonance X; =X¢

0.5H

D e |

120V

O— i

? Hz 60 O

higher efficient




The Transformer

A transformer is a device that uses induction and ac current to step
voltages up or down.

Induced emf’s
are:

Transformer




Transformers (Continued):

Transformer AD
E, = — N 5 =

At

AD
E. = - N g ———

At

Recognizing that /.j/At is the same im eaeh cojll, we dindr firsit relatiambyy
second and obkain:

The transformer equation: N .

N

Ep
Es




Example 7: A generator produces 10 A at 600 V. The primary
coil in a transformer has 20 turns. How many secondary turns
are needed to step up the voltage to 2400 V?

Applying the transformer 1= 10 A; V,= 600V
equation:

Ve _ Ny

V. N

Ns =80 turns

step-up: transformer




Transformer Efficiency

There is no power gain in stepping up the voltage since voltage is increased by
reducing current. In an ideal transformer with no internal losses:

here is no power gain in stepping up the voltage since voltage is increased by
reducing current. In an ideal transformer with no internal losses:

Ideal Transformer An ideal transformmet:

The above equation assumes no internal energy losses due to heat or flux
changes. are usually between



Summary

Effective current: /= 0.707 /5,

Effective voltage: V.= 0.707 V.., ‘

In ive R n

X, =27 fL UnitistheQ

Ohm's law: V =1X,

Capacitive Reactance:
1

B 27 fC

Xe

Ohm's law: V. = IX

UnitistheQ

C




Summary (Cont.)

2 2
V. = \/VR +(V, -V.)

Z:\/R2+(XL—XC)2

T

. . Vo
NV_=1Z or |=—
Z

vV, -V
tang = ———
VR
X - X
tan ¢ =
R
1




Summary (Cont.)

Power in AC Circuiis:

In terms of ac voltage: In terms of the resistance R:
P =1V cos ¢ P=FR
—— 1

Transformears:




UNIT- IV

RESONANCE AND MAGNETIC CIRCUIT



Resonance In Electric Circuits

Any passive electric circuit will resonate if it has an inductor
and capacitor.

Resonance is characterized by the input voltage and current
being in phase. The driving point impedance (or admittance)
Is completely real when this condition exists.

In this presentation we will consider (a) series resonance, and
(b) parallel resonance.
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Series Resonance

Consider the series RLC circuit shown below.

V =V, £0 MV e

The input impedance is given by:

1
Z =R + j(wL- —)
wC

The magnitude of the circuit currentis;

0 m
I =1 |=

140



At resonance we designate w as w, and write;

1
W =

T JLc

This is an [mportant equation to remember. It applies to both series
And parallel resonant circuits.

141



The magnitude of the current response for the series resonance circuit
IS as shown below.

\Y

m

/'Jz_

Half power point

Bandwidth: l

BW = wgy = W, —W;y

142



The peak power delivered to the circuitis;

p-—"
R

The so-called half-power is given wher | = Vi
2R

We find the frequencies, w, and w,, at which this half-power
occurs by using;

wC

x/Z_R\/RZ + (WL - L)2



After some insightful algebra one will find two frequencies atwhich
the previous equation is satisfied, they are:

R FRY 1
W, o=— —+ || — | +—
2L LZLJ LC

R rRY 1
W, = —+,[| —| +—
2L LZLJ LC

The two half-power frequencies are related to the resonant frequency by

‘Wo — ’\/Wlwz ‘

144



The bandwidth of the series resonant circuit is given by;

R

BW =Wb=W2—W1=f

We define the Q (quality factor) of the circuit as;

w L 1 1 L
Q: ju— ju— e
R wRCc R\lc)

Using Q, we can write the bandwidth as;

W0
BW =

Q

These are all important relationships.

145



An Observation:

If Q> 10, one can safely use theapproximation,;

BW BW
W, =w —  — and W, =W _ +

These are useful approximations.

146



An Observation:

By using Q =w,L/R in the equations for w;and w, we have,

ey
W =W | — 4 —_— +1|
' °|L2Q \ZQJ Jl

and

147



In order to get some feel for how the numerical value of Q influences
the resonant and also get a better appreciation of the s-plane, we consider
the following example.

It is easy to show the following for the series RLCcircuit.

1
— S
I (s) 1 L
V(s) Z(s) 32+Es+ 1
L LC

In the following example, three cases for the about transferfunction
will be considered. We will keep w, the same for all three cases.

The numerator gain,k, will (a) first be set k to 2 for the three cases, then
(b) the value of k will be set so that each response is 1 atresonance.



An Example lllustrating Resonance:

The 3 transfer functions considered are:

Eﬁl: kS
s? +2s5+400
Case 2; ’
S
s° +55+400
Case 3:
ks

s +10s+400

149



An Example lllustrating Resonance:

The poles for the three cases are given below.
Case L.

s° +25+400=(s+1+ j19.97)(s+1- j19.97)

s° +55+400=(s+2.5+ j19.84)(s+2.5— jl19.84)

s* +10s+400=(s+5+ j19.36)(s+5— j19.36)

150



Comments:

Observe the denominator of the CE equation.

, R 1
S° 4+ —S + ——

L LC

Compare to actual characteristic equation for Case 1.

2
S +2s+400
WO2 =400 > w =20 rad/sec
R W,
BW = —=2 rad/sec » Q= =10

L BW
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Poles and Zeros In the s-plane:

(3)

(1)?( ............... g

(2)

p.
Yd

- 20

jw axis

s-plane

0 axis

Note the location of the poles
for the three cases. Also note
there is a zero at the origin.

2.5
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The frequency response starts at the origin in the s-plane.
At the origin the transfer function is zero because there isa
zero at the origin.

As you get closer and closer to the complex pole, which
has aj parts in the neighborhood of 20, the response starts
to increase.

The response continues to increase until we reach w =20.
From there on the response decreases.

We should be able to reason through why theresponse
has the above characteristics, using a graphical approach.
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Matlab Program For The Stud

% name of program is freqtest.m grid
% written for 202 S2002, wlg H1l = bode (numl,denl,w) ;
$CASE ONE DATA: magHl=abs (H1) ;
K= 2;
numl = [K 0]; H2 = bode (num2,den2,w) ;
denl = [1 2 400]; magH2=abs (H2) ;
num2 = [K 0]; H3 = bode (num3,den3,w) ;
den2 = [1 5 400]; magH3=abs (H3) ;
num3 = [K 0]; plot(w,magHl, w, magH2, w,magH3)
den3 = [1 10 400]; grid
xlabel ('w(rad/sec) ')
w= .1:.1:60; ylabel ('Amplitude’')
gtext('Q = 10, 4, 2")
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Program Output

=10, 4,2

0.9

it
oo

o
\]

o
o

Amplitude
o
ol

0.4
0.3 /
0.2 // \\
0:1 P /// \\l
/
10 20 30 © .
w(rad/sec)

60
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Comments: cont.

From earlier work:

With Q = 10, this gives;

w4=19.51 rad/sec, W, = 20.51 rad/sec
Compare this to the approximation:

w;=wy—BW=20-1=19rad/sec, w,=21rad/sec

So basically we can find all the series resonant parameters
if we are given the numerical form of the CE of the transfer
function.



Next Case: Normalize all responses to 1 atw,

1

N
| /| 1\\\ )

10
SIRT WAN
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Three dB Calculations:

Now we use the analytical expressions to calculate w; and w,
We will then compare these values to what we find from the
Matlab simulation.

Using the following equations with Q =2,

we find,
w, = 15.62 rad/sec

w,=21.62 rad/sec
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Checking w, and w,

Wy

(cut-outs from the simulation)

15.3000
15.4000
15.5000
p 15.6000
15.7000
15.8000

O OO O0OOoOo

.6779
.6871
.6964
.7057
.7150
.7244

Ws

25.
25.
25.
p 25.
25.
25.
25.

This verifies the previous calculations.

3000
4000
5000
6000
7000
8000
9000

Now we shall look at Parallel Resonance.

O O OO0 OoOo

.7254
.7195
L7137
.7080
.7023
.6967
.6912
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Background

Consider the circuits shown below:

V

- ® =k

—_—C

— C V:I|R+jWL+

i

1
jwC J

160



‘Duality‘

1 1] o 1]
| =V | —+ JwC + - V=||R+jWL+_
LR jWLJ | JWCJ

We notice the above equations are the same provided.:

| < >V :
If we make theinner-change,
then one equation becomes
1 the same as the other.
R =« &
R For such case, we say theone
circuit is the dual of the other.
L > C
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Parallel Resonance

Background

What this means is that for all the equations we have
derived for the parallel resonant circuit, we can use
for the series resonant circuit provided we make

the substitutions:

R replaced be  —

L replaced by C
C replaced by L
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Parallel Resonance

W =

1
A/ LC

W

Series Resonance

Jie
Q=wRC
1
BW =W _=—
RC
[ : ]
_£1+\/( 1),
j2rRc \l2rRC ) LC |
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Example 1: |Determine the resonant frequency for the circuit below.

/\N\I_
IwL (R .
wh (R + we ) (CWLRC + jwL )
Z — =
" _ 1 (1- w’LC )+ jwRC
R+ JwL +
jwC

At resonance, the phase angle of Z must be equal to zero.
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Analysis (-w’LRC + jwL )

(1- w’LC )+ jwRC

For zero phase;

(-W'LCR ) (1-w’'LC
This gives;
w’LC —w’'R°C =1
or
1
W =

©J(LC —RC?)

165



Example 2:

A series RLC resonant circuit has a resonant frequency admittance of
2x10-2S(mohs). The Q of the circuit is 50, and the resonant frequency is

10,000 rad/sec. Calculate the values of R, L, and C. Find the half-power
frequencies and the bandwidth.

Eirst. R =1/G = 1/(0.02) = 50 ohms.

sSecond, from q = W , we solve for L, knowing Q, R, and w,to

R
find L = 0.25 H.
50
Third, we canuse Q

= = =100 uF
w_R 10,000 x50



Example 2: (continued)

w  1x10 °
Eourth: Wecanuse W __ == = 200 rad /sec

Q 50

and

Eifth: Use the approximations;

Wi= Wy - 0.5wgy 10,000 — 100 = 9,900 rad/sec

W,= W, -0.5wg, = 10,000 + 100 = 10,100 rad/sec
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Peak Voltages and Resonance:

Vi Vi
+ -+ _
,\N\I O
R L
4 +

We know the following: |

Whenw =w, = _1
v > Jic
IS purely real and equal to R.

, Vgand | are in phase, the driving point impedance

vi A plot of |I| shows that it is maximum at w = w,. We know the standard
equations for series resonance applies: Q, wgy, €tc.
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Reflection:

v~ A question that arises is what is the nature of Vg, V|, and V:? A little
reflection shows that Vris a peak value at w,. But we are not sure
about the other two voltages. We know that at resonance they are equal
and they have a magnitude of QxVs.

vi Irwin shows that the frequency at which the voltage across the capacitor
IS a maximum is given by;
1
2Q °

v The above being true, we might ask, what is the frequency at whichthe
voltage across the inductor is a maximum?

W =W 1-

max 0

We answer this question by simulation




Series RLC Transfer Functions:

The following transfer functions apply to the series RLC circuit.

—

!

1

VC(S):DLC

Vi(s)

vV, (s)

R

1

+—S+ ——

L

SZ

LC

V()

VR(S) L

R

1

+ —S+ ——

L

V()

2
S

R

+ —S+ ——

L

LC

1
LC
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Parameter Selection:

We select values of R, L. and C for this first case so that Q =2 and
w, = 2000 rad/sec. Appropriate values are; R = 50 ohms, L = .05 H,
C = 5uF. The transfer functions become as follows:

<

(@]

=

S

<

L

\Y

S

1

R

s?+1000s + 4x10°

s?+1000s + 4x10°

1

Vv

S

s°+1000s + 4x10°
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Matlab Simulation:

% program is freqcompare.m
% written for 202 S2002, wlg

numC = 4e+6;
denC = [1 1000 4e+6];

numL = [1 0 0];
denL = [1 1000 4e+6];

numR = [1000 0];
denR = [1 1000 4e+6];

w = 200:1:4000;
grid

HC = bode (numC,denC,w) ;
magHC = abs (HC) ;

[

grid
HC = bode (numC,denC,w) ;
magHC = abs (HC) ;

HL = bode (numL,denL,w) ;
magHL = abs (HL) ;

HR = bode (numR,denR,w) ;
magHR = abs (HR) ;

plot (w,magHC, 'k-', w, magHL, 'k--', w, magHR,

grid

xlabel ('w(rad/sec) ')
ylabel ('Amplitude')

|k:|)

title(' Rsesponse for RLC series circuit, Q =2")

gtext('VC'")
gtext('VL'")
gtext(' VR')
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Simulation Results |
Rsesponse for RLC series circuit, Q=2

2.5
2

O
I

=
(6]

Amplitude
\
e
/

2500 3000 3500 4000

500 1000 1500 2000
w(rad/sec)

L85




Analysis of the problem:

Given the previous circuit. Find Q, Wg, Wax, [Vc| at Wy, and |V| at W,

Vg \'A
+ -+ —
I\N\I YY)
R=50 Q L=5
+ mH +

1

1
W = =
> JLC /5010 *x5x10

Solution: = 2000 rad /sec

w L 2x10°x5x10 °
Q = = — 2
R 50
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Problem Solution:

= 0.9354 W

MAX O

|VR | at W = Q |VS | = 2x1 = 2volts ( peak )

Qx [V | 2
|V latw = = = 2.066 volts (peak ))

' 1 0.968
4Q°

Now check the computer printout.
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Problem Solution (Simulation):

Maximum

1.0e+003 *

1.8600000 0.002065141
1.8620000 0.002065292
1.8640000 0.002065411
1.8660000 0.002065501
1.8630000 0002065560
1.8700000 0.002065588
1.8720000 0.002065585
1.8740000 0.002065552
1.8760000 0.002065487
1.8780000 0.002065392
1.8800000 0.002065265
1.8820000 0.002065107
1.8840000 0.002064917
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Simulation Results:

Rsesponse for RLC series circuit, Q =10

12
¢ Q=10
8
(D)
e}
2
S 6
=
<
4
2 - —
e
O — e NM"// - - S . | \&M—_‘__H
0 500 1000 1500 2000 2500 3000 3500 4000

w(rad/sec)
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Observations From The Study:

v The voltage across the capacitor and inductor for a series RLC circuit
IS not at peak values at resonance for small Q (Q <3).

Even for Q<3, the voltages across the capacitor and inductor are

v
equal at resonance and their values will be QxVs.

v For Q>10, the voltages across the capacitors are for all practical
purposes at their peak values and will be QxVs.
v Regardless of the value of Q, the voltage across the resistor
reaches its peak value at w =wy,,.
y For high Q, the equations discussed for series RLC resonance
1 can be applied to any voltage in the RLC circuit. For Q<3, this
IS not true.
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Given the following circuit: |

@ v

v We want to find the frequency, w,, at which the transfer function
for V/I will resonate.

The transfer function will exhibit resonance when the phaseangle
YU between V and | are zero.



The desired transfer functions is:

V. (1/sC)(R+sL)
I R+sL+1/sC

This equation can be simplified to;

Vv R+sL

| LCs?+RCs+1

Withs ———  jw

Vv R + jwlL

| (1- w2LC)+ jwR
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Resonant Condition:;

For the previous transfer function to be at a resonant point,
the phase angle of the numerator must be equal to the phase angle

of the denominator.

Z 0 =/0
num dem
or,
L (wL ( wRC )
gnum :tan l( _\ y gde” =tan 1 2 |
R (1-w’LC)
Therefore;
w L wRC
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Resonant Condition Analysis:

Canceling the w’s in the numerator and cross multiplying gives,

L(1-w?’LC)=R°C or w’L°C=L-R°C

This gives,
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Resonant Condition Analysis:

What is the significance of w,and w, in the previous two equations?

Clearly w,is a lower frequency of the two. To answer this question, consider
the following example.

Given the following circuit with the indicated parameters. Write a
Matlab program that will determine the frequency response of the
transfer function of the voltage to the current as indicated.

R

|
g%
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Resonant Condition Analysis: Matlab Simulation:

We consider two cases:

Case 1: Case 2:
R =3o0ohms R=1ohms
C =6.25x10>°F C =6.25x10>°F
L=0.01H L=0.01H
w,= 2646 rad/sec w,= 3873 rad/sec

For both cases,

W, = 4000 rad/sec
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Resonant Condition Analysis: Matlab Simulation:

The transfer functions to be simulated are given below.

Case 1:

V 0.001s + 3
|  6.25x10°%°s°+1.875x10 "+1

Case 2:

V 0.001s +1
|  6.25x10°%s’+6.25x10°°+1
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Rsesponse for Resistance in series with L then Parallel with C

[EEN
D

=
N

=
o

Amplitude

0o

";’ R=1 ohm
AR rad/car /
UV AU/ OCT U
- .
3 ohms /

1000 2000 3000 4000 5000 6000 7000 8000

w(rad/sec) 198



What can be learned from this example?

v

v

v

w,does not seem to have much meaning in this problem.
What is w,if R =3.99 ohms?

Just because a circuit is operated at the resonant frequency

does not mean it will have a peak in the response at the
frequency.

For circuits that are fairly complicated and can resonant,
It is probably easier to use a simulation program similar to
Matlab to find out what is going on in the circuit.
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MAGNETIC CIRCUITS



Magnetic and Electromagnetic Fields

Flux density

/ vector N T
Flux lines B 1 /Flux lines
@ B
(a) Permanent magnet (b) Field around a straight wire

carrying current /

Iron core
INWINWIN
\L/
N[ S
AN
. B
b V

(c) Field for a coil of wire

Figure 15.1 Magnetic fields can be visualized as lines of flux that form closed
paths. Using a compass, we can determine the direction of the flux lines at any
point. Note that the flux density vector B is tangent to the lines of flux.
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Magnetic
Materials

Iron, Cobalt and Nickel and various other alloys and
compounds made using these three basic elements
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Electric Current and Magnetic
Field

/|
B
~ m
-— \ S
1 B
1
/| l
(a) If a wire is grasped with the thumb (b) If a coil is grasped with the fingers
pointing in the current direction, the pointing in the current direction, the
fingers encircle the wire in the thumb points in the direction of the
direction of the magnetic field magnetic field inside the coil

Figure 15.2 lllustrations of the right-hand rule.
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A Few Definitions Related to
Electromagnetic Field

@ (Unit is Weber (Wb)) = Magnetic Flux Crossing a Surface of
Area _Ainm2.

B (Unit is Tesla (T)) = Magnetic Flux Density = ®/A
H (Unit is Amp/m) = Magnetic Field Intensity = _
u = permeability = y, b,

U, = 4n*10-"H/m (H =Henry) = Permeability of free space (air)
i, = Relative Permeability

i, >> 1 for Magnetic Material
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Ampere's Law

The line integral of the magnetic field intensity around a closed path is
equal to the sum of the currents flowing through the area enclosed by

the path.

j3:|.5|=2i

H.dl = |H|dl|cos 0

Direction of
integration

$Hedl=1+1,

Figure 15.6 Ampere’s law states that the line integral of magnetic field intensity
around a closed path is equal to the sum of the currents flowing through the
surface bounded by the path.
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Example of Ampére's Law

Find the magnetic field along a circular path around an infinitely long
Conductor carrying _Iampere ofcurrent.

//—‘

H =
//Wire carrying

/ current out B ’ H
// of page r \\ 900
[
\\ //' dl
/
/
&\ Au

Figure 15.7 The magnetic field around a long straight wire carrying a current
can be determined with Ampeére’s law aided by considerations of symmetry.

Since both di and H

are perpendicular to radius _r'at any point_A

on the circular path, the angle 6 is zero between them at all points. Also since all
the points on the circular path are equidistant from the current carrying
conductor

IS constant at all points oJithe circle
- -

H

%

j‘DH.dI:;chTI:% H

Hi2nr =

or _
= |

2 TTr
magckt
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Magnetic Circuits

*They are basically ferromagnetic structures(mostly Iron, Cobalt,
Nickel alloys and compounds) with coils wound around them

*Because of high permeability most of the magnetic flux isconfined
within the magnetic circuit

*Thus is always aligned with

- -

-ExampleHs: Transformers,Actuators, Bedrodm! &@yre0s) Electric Machines
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Magnetic Circuits (1)

N W

I= mean length
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Magnetic Circuits (2)

F =NI= Magneto Motive Force or MMF = # of turns * Current passing
through it

F = NI = HI (why!)

B D
or —1 =NI or  ——1 =Nl
H HA
NI
o ¢ -
F/(uA)
NI
or o = —
R

® = Reluctance of magnetic path
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Analogy Between Magnetic and Electr
Circuits

I s

F =MMF is analogous to Electromotive force (EMF) =E

@ = Fluxis analogous to | = Current

g = Reluctance is analogous to R = Resistance

P = Permeance B

1
— = Analogous to conductance G = —
R R

198



Magnetization Curves

saturation
B knee
A B A
Linear \
H H
Magnetization curve Magnetization curve
(linear) (Ideal) (non-linear) (Actual)

(see also Fig. 1.6 in the text)
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Magnetization Curves(2)

*One can linearize magnetic circuits by including air-gaps

*However that would cause a large increase in ampere-turn
requirements.

Ex: Transformers don‘t have air-gaps. They have very little
magnetizing current (5% of full load)

Induction motors have air-gaps. They have large magnetizing
current (30-50%)

Question: why induction motors have air —gap and
transformers don‘t?
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Magnetization Circuits with Air-

gap - -
i \'%
Ig
N ¥
' (T
&
| S
i 9 Ni d
SRC: SRg: @:
Mo 'ugAg ERC+ERg

Ni :HCICJngIg A, = A, = wd (Neglecting fringing )
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Fringing

With large air-gaps, flux tends to leak outside the air —gap. This is

called fringing which increases the effective flux area. One way to
approximate this increase is:

w,=w+ld, =d+Il,;A, =w,d,
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Example of Magnetic Circuits On
Greenboard



Magnetization Curves (for examples)

Flux density, B (tesla)

14
13
1.2
11
1.0
0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1

Silicon

sheet st'eel 7]

/7

Cast steel

Cast iron ~:

:
=

e

200

Field intensity, H (At/m) —=

400

500

800

1000
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Inductance(L)

Definition: Flux Linkage(A) per unit of current(l) in a magnetic circuit

o
A N O :
L=z —= —— R
| | -
I 1N
NI R
(D:_ 2 , =
‘R
N2
L= —
‘R

Thus inductance depends on the geometry of construction
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Example of Inductances On
Greenboard
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How to find exact Inductances with
magnetic circuit with finite thickness
(say a torroid with finite thickness)

see problem 1.16
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Faraday's law of Electromagnetic
Induction

The EMF (Electromotive Force) induced in a magnetic circuitis
Equal to the rate of change of flux linked with the circuit

dAi d(ND) dod
e = = =N —
dt dt dt
1 LI =NO®
dLi di
= -_— L_
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Lenz's Law

The polarity of the induced voltage is given by Lenz'slaw

The polarity of the induced voltage will be such as to oppose the very
cause to which it is due

Thus sometimes we write
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A precursor to Transformer

) R O =D, Sin(wt)
V =V,,Cos(mt)
—>
EE
I N
o
| _
|deally
dod
e=—-N —=-N® wCos (nt)=-E Cos(ot)=-V Cos(wt)
dt

. N® NO® Sin(ot) _
i- — - =1 Sin(ot)
L L
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A Precursor to Transformer(2)

100

50

-100

100

50

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.002

0.004

0.006

0.008

time

0.01

0.012

0.014

0.016

211



Example on excitation of magnetic
circuit with sinusoidal flux On
greenboard
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Example on excitation of magnetic
circuit with square flux on greenboarc
(Important for Switched Mode Power

Supplies)
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What will non-linearity in magnetic
circuit lead to?

It would cause distortion in current waveforms since by Faraday's
and Lenz's law the induced voltage always has to balance out the
applied voltage that happens to be sinusoidal
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Sinusoidal voltage non-
sinusoidal current

ZF, A = turns

a)

@D () and

P
> D s

‘nl

)
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Iron Losses in Magnetic Circuit

There are two types of iron losses
a) Hysteresis losses

b) Eddy Current Losses

Total iron loss is the sum of these two losses
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1 Hysteresis losses
T -

f =frequency
of sine source /Q

B-H or Hysteresis loop

f =

U UV

saturation

knee point m
| . s

B, = Retentive flux density (due to property of retentivity)
H.= Coercive field intensity (due to property of coercivity)
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Hysteresis losses (2)

*The lagging phenomenon of B behind H is called hysteresis

*The tip of hysteresis loops can be joined to obtain the
magnetization characteristics

In each of the current cycle the energy lost in the coreis
proportional to the area of the B-H loop

‘Energy lost/cycle =V e

f HdB

« P,,= Hysteresis l0ss = fV e j} HdB = KnB"maxf

ki, = Constant, n = 1.5-2.5, B,,,,= Peak flux density

magckt
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Eddy current loss

< ..———Laminations

flux

flux < durrent N
\/

N

N

Because of time variation of flux flowing through the magnetic
material as shown, current is induced in the magnetic material,
following Faraday‘s law. This current is called eddy current.

The direction of the current is determined by Lenz's law. This current
can be reduced by using laminated (thin sheet) iron structure, with
Insulation between the laminations.

*P. = Eddy current loss = koB2,.f
k. = Constant v Bpa= Peak flux density
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Permanent Magnets

* Alloys of Iron, Cobalt and Nickle

*Have large B-H loops, with large B, and—H.

*Due to heat treatment becomes mechanically hard and arethus
called HARD IRON

Field intensity is determined by the coercive field requiredto
demagnetize it

*Operating points defined by B,,,H,, in the second quadrant of
the B-H loop
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Using Permanent Magnets for
providing magnetic field

i

SOFT IRON

SOFT IRON
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Designing Permanent Magnets

*The key issue here is to minimize the volume V,, of material
required for setting up a required By in a given air gap

It can be shown that V, =B,2V,/u,BHy, (s€e derivation in text)
where V= Agl, Volume of air-gap,l, = length of air-gap, Ay =area
of air-gap

*Thus by maximizing B,,, H,, product V, can be minimized

-Once B,,, H at the maximum B,,, H, product point are known, |, =length of
permanent magnet, A, =area of permanent magnet can be found as

*In=-lgHy/Hr, (applying ampere’s law),
*An=B,A,/Br, (same flux flows through PM as well as air-gap)
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Finding the maximum product point

1.4

11.2

- Demagnetization curve for

Neodymium-iron-boron magnet 1

o o o
IN o)) o
B(Tesla)

\
o
N

1000  -800 -600 -400 -200 0
H(KA/m)
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Finding the maximum product point (

B= mH+c, m and c are constants.

Tofind maximum BH product, we need to differentiate
BH=mH?+cH;

and set it equal to 0. Thus we get

H,,=-c/2m. and B, =c/2
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Finding the maximum product point (

Answer:

B, =0.64 T,H,, = -475 kA/m

225



UNIT-V

NETWORK THEOREMS



Introduction

This chapter introduces important

fundamental theorems of network analysis.
They are the

Superposition theorem
Thévenin’s theorem

Norton’s theorem

M a ximum power transfer theorem
Substitution Theorem
Millman’s theorem
Reciprocity theorem



Superposition Theorem

Used to find the solution to networks with o or
more sources that are not in series or parallel. The
current through, or voltage across, an element in a
network is equal to the algebraic sum of the
currents or voltages produced independently by
each source. Since the effect of each source will
be determined independently, the number of
networks to be analyzed will equal the number of
sources.



Superposition Theorem

o T h e total power delivered to a resistive
must be determined using the total current
through or the total voltage across the element
and cannot be determined by a simple sum of
the power levels established by each source.



Thévenin’s Theorem




Thévenin’s Theorem

Reduce the number of components required to
establish the same characteristics at the output
terminals.Investigate the effect ofchanging a
particular component on the behavior of a network
without having to analyze the entire network after each
change.



Thévenin’s Theorem

oS Procedure to determine the proper values of
RTh and ETh
o] Preliminary

1. Remove that portion of the network across which the Thévenin
equation circuit is to be found. In the figure below, this requires

that the load resistor R, be temporarily removed from the
network.

Ry lll.

+
L= §Rl §R3 g’ﬁ




Thévenin’s Theorem

Mark the terminals of the remaining two-terminal
network. (The importance of this step will become
obvious as we progress through some complex
networks.)

Calculate R by first setting all sources to zero (voltage
sources are replaced by short circuits, and current
sources by open circuits) and then finding the resultant
resistance between the two marked terminals. (If the
internal resistance of the voltage and/or currentsources
is included in the original network, it must remain when
the sources are set to zero.)



Thévenin’s Theorem

ETh:

4. Calculate Em by first returning all sources to their original
position and finding the open-circuit voltage between
the marked terminals. (This step is invariably the one
that will lead to the most confusion and errors. In all
cases, keep in mind that it is the open-circuit potential
between the two terminals marked in step 2.)



Thévenin’s Theorem

Conclusion:

5. Draw the Thévenin R
equivalent circuit with Th lll.
the portion of the circuit
previously removed +
replaced between the T Ep g’RI
terminals of the =
equivalent circuit. This
step is indicated by the
placement of the
resistor R between the
terminals of the
Thévenin equivalent
circuit.




Thévenin’s Theorem

Experimental Procedures

o Two popular experimental
procedures determining the parameters of
the Thévenin equivalent network:

Direct Measurement of Er,and Ry,

For any physical network, the value of Er,can ke
determined experimentally by measuring the open-
circuit voltage across the load terminals.

The value of Rycan then be determined by arddigthe
network with a variable resistance R,.



Thévenin’s Theorem

Measuring Vocand lsc The Thévenin voltage is again
determined by measuring the open-circuit voltage across
the terminals of interest; that is,

Eth= Voc. Todetermine Ry, a short-circuit condition is
established across the terminals of interest and the
current through the short circuit (I, ) is measured with an
ammeter.

Using Ohm'slaw:
RTh = Voc /Isc



Norton’s Theorem

Norton'’s theorem states the following:

Any two-terminal linear bilateral dc network anbe
replaced by an equivalent circuit consisting of a
current and a parallel resistor.

The steps leading to the proper values dyand
Ru.
Preliminary steps:

1. Remove that portion of the network across which
the Norton equivalent circuit is found.

2. Mark the terminals of the remaining two-terminal
network.



Norton’s Theorem
oS Finding Ry:

3. Calculate Ry by first setting all sources to zero
(voltage sources are replaced with short circuits,
and current sources with open circuits) and then
finding the resultant resistance between the two
marked terminals. (If the internal resistance of the
voltage and/or current sources is included in the
original network, it must remain when the sources
are set to zero.) Since Ry = Ry, the procedure and
value obtained using the approach described for
Thévenin's theorem willdetermine the proper value
of Rw.



Finding I,: Norton's Theorem

4. Calculate Iy by first returning all the sources to
their original position and then finding the short-
circuit current between the marked terminals. It
is the same current that would be measured by an
ammeter placed between the marked terminals.

Conclusion:

5. Draw the Norton equivalent circuit with the
portion of the circuit previously removed replaced
between the terminals of the equivalent circuit.



Maximum Power Transfer Theorem

A load will receive maximum power from a
network when its total resistive value is
exactly equal to the Thévenin resistance of
the network applied to the load. That s,

RL =Rt



Maximum Power Transfer Theorem

For loads connected directly to a cc
voltage supply, maximum power will be
delivered to the load when the load
resistance is equal to the internal
resistance of the source; that is, when:

RL = Rint



Millman’s Theorem

Any number of parallel voltage sources an be

reduced to one.

This permits finding the current through or aross R,
without having to apply a method such as mesh
analysis, nodal analysis, superposition and so on.

1. Convert all voltage sources to current sources.
2. Combine parallel current sources.

3. Convert the resulting current source to a voltage source
and the desired single-source network is obtained.



Substitution Theorem

The substitution theorem states: If the voltage
across and the current through any branch of a dc
bilateral network is known, this branch can be
replaced by any combination of elements that will
maintain the same voltage across and current through
the chosen branch. Simply, for a branch equivalence,
the voltage and current must be the same.



Reciprocity Theorem

The reciprocity theorem is applicable only btsingle-
source networks and states the following:

The current I'in any branch of a network, due to asingle
voltage source E anywhere in the network, will equal
the current through the branch in which the source
was originally located if the source is placed in the

branch in which the current I was originally
measured.

oS The location of the voltage source and the resulting
may be interchanged without a change in current
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