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Potential Difference =Voltage=EMF
In a battery, a series of chemical  

reactions occur in which electrons  
are transferred from one terminal to  
another. There is a potential  
difference (voltage) between these  
poles.

The maximum potential difference a  
power source can have is called the  
electromotive force or (EMF), . The  
term isn't actually a force, simply  
the amount of energy per charge  
(J/C or V)



All electric circuits have three main parts

1. A source of energy

2. A closed path

3. A device which uses the energy

If ANY part of the circuit is open the device will not work!



Electricity can be symbolic 
Circuits are very similar to water flowing through a pipe

A pump basically works on TWO  

IMPORTANT PRINCIPLES concerning its  

flow

• There is a PRESSURE DIFFERENCE

where the flow begins and ends

• A certain AMOUNT of flow passes each

SECOND.

A circuit basically works onTWO  

IMPORTANT PRINCIPLES

• There is a "POTENTIAL DIFFERENCE

aka VOLTAGE" from where the charge

begins to where it ends

• The AMOUNT of CHARGE that flows

PER SECOND is called CURRENT.



Current
Current is defined as the rate at which charge  

flows through a surface.

The current is in the same direction as the flow  
of positive charge (for this course)

Note: The “I” stands  

for intensity



DC = Direct Current - current flows in one direction

Example: Battery

AC = Alternating Current- current reverses direction many times per second.  

This suggests that AC devices turn OFFand

ON. Example: Wall outlet (progress energy)



Ohm’s Law
“The voltage (potential difference, emf) is directly relatedto  

the current, when the resistance isconstant”

 V = IR

 = IR

 V  I

R = constant

R = Resistance

alityof proportion

Voltage vs. Current
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Since R=V/I, the resistance is the  

SLOPE of a V vs. I graph



The unit for resistance is

the OHM, 



Electrical POWER
We have already learned that POWER is the rate at which work (energy)  

is done. Circuits that are a prime example of this as batteries only last  
for a certain amount of time AND we get charged an energy bill each  
month based on the amount of energy we used over the course of a  
month…aka POWER.



POWER
It is interesting to see how certain electrical  
variables can be used to get POWER. Let’s take

Voltage and Current for example.



Other useful power formulas

These formulas can also  
be used! They are  
simply derivations of  
the POWER formula  
with different versions  
of Ohm's law  
substituted in.



Ways to Wire Circuits
There are 2 basic ways to wire a circuit. Keep in mind that  

a resistor could be ANYTHING ( bulb, toaster, ceramic  
material…etc)

Series – One after another

Parallel – between a set of junctions and  

parallel to each other



Schematic Symbols

For the battery symbol, the  

LONG line is considered to be  

the POSITIVE terminal and the  

SHORT line , NEGATIVE.

The VOLTMETER and AMMETER

are special devices you place IN  

or AROUND the circuit to  

measure the VOLTAGE and  

CURRENT.



The Voltmeter & Ammeter
The voltmeter and ammeter cannot be

just placed anywhere in the circuit.They

must be used according to their
DEFINITION.

Since a voltmeter measures voltage or

POTENTIAL DIFFERENCE it must be

placed ACROSS the device you want  

to measure. That way you can measure  

the CHANGE on either side of the  

device.

Voltmeter is drawn ACROSS the resistor

Since the ammeter  

measures the current or  

FLOW it must be placed in  

such a way as the charges  

go THROUGH the device.

Current goes THROUGH the ammeter



Simple Circuit
When you are drawing a  

circuit it may be a wise  
thing to start by drawing  
the battery first, then  
follow along the loop  
(closed) starting with  
positive and drawing what  
you see.



Series Circuit
In in series circuit, the resistors  

are wired one after another.  
Since they are all part of the  
SAME LOOP they each  
experience the SAME

AMOUNT of current. In figure,  
however, you see that they all  
exist BETWEEN the terminals  
of the battery, meaning they  
SHARE the potential (voltage).

= I = I = I
1 2 3

= V + V + V
1 2 3)Total

V
( series

)Total( series
I



Series Circuit
= I = I = I

1 2 3

= V + V + V
1 2 3

I 
( series  ) Total

V 
( series  )Total

R s =  R i

+ R + R

+ I R + I R
2 2 3 3

= V + V + V ;  V = IR
1 2 3

T T series

series 1

V
( series )Total

32

1 1
) = I R( I R

R = R

As the current goes through the circuit, the charges must USE ENERGY to get  

through the resistor. So each individual resistor will get its own individual potential  

voltage). We call this VOLTAGEDROP.

Note: They may use the  

terms ―effective‖or

―equivalent‖ to mean

TOTAL!



Example
A series circuit is shown to the left.

a) What is the total resistance?
R(series) = 1 + 2 + 3 = 6

b) What is the total current?
V=IR 12=I(6) I = 2A

c) What is the current across EACH  
resistor?

They EACH get 2 amps!

d) What is the voltage drop across  
each resistor?( Apply Ohm's law to  
each resistor separately)

V1=()()= 2 V V3=(2)(3)= 6V V2=(2)(2)= 4V

Notice that the individual VOLTAGE DROPS add up to the TOTAL!!



Parallel Circuit
In a parallel circuit, we have  

multiple loops. So the  
current splits up among the  
loops with the individual  
loop currents adding to the  
total current

Regarding Junctions :

I 
IN 

= I
OUT

The current going IN to a junction will  

always equal the current going OUT of a  

junction.

I 
( parallel )Total

= I + I + I
1 2 3

It is important to understand that parallel  

circuits will all have some position  

where the current splits and comes back  

together. We call these JUNCTIONS.

Junctions



1 1
= 

R
P

R
i

= + +

Parallel

1 1 1

V
( T )

R
T

1

R
P

R
1

R
2

R
3

= V = V = V
1 2 3

= I + I + I ;  V = IR
1 2 3

V V V

= 1  + 2   + 3

R
1

R
2

R
3

V 
( parallel    )Total

I 
( parallel    ) Total

Parallel Circuit
Notice that the JUNCTIONS both touch the  

POSTIVE and NEGATIVE terminals of the  

battery. That means you have the SAME  

potential difference down EACH individual  

branch of the parallel circuit. This means  

that the individual voltages drops are equal.

This junction  

touches the  

POSITIVE

terminal

This junction  

touches the  

NEGATIVE

terminal

V



Example

=
1

1

P
= 0 .454 → R =

R
p

0 .454

1 1 1
= + +

R
P

5 7 9

1

 V = IR

8 = I ( R ) =

8
= = 0.90A

9

8
= =1.14 A

7

8
= = 1.6A

5

 V = IR

9 7 5 
III

To the left is an example of a parallel circuit.

a) What is the total resistance?

b) What is the total current?

8 V each!

c) What is the voltage across EACHresistor?

d) What is the current drop across eachresistor?

(Apply Ohm's law to each resistor separately)

2.20 

3.64A

Notice that the  

individual currents  

ADD to the total.



Compound (Complex) Circuits
Many times you will have series and parallel in the SAME circuit.

Solve this type of circuit

from the inside out.

WHAT IS THE TOTAL

RESISTANCE?

R s = 80 + 33 .3 = 113 .3 

1 1 1

P
= + ; R = 33 .3 

R P 100 50



Compound (Complex) Circuits

R 
s 
= 80 + 33 .3 = 113 .3 

1 1 1

P
= + ; R = 33 .3 

R
P

100 50

I T =

120 = I (113 .3)
T

T T T
 V = I R

 V = I R
80  80  80 

80 
V = (1 .06 )( 80 )

What is the VOLTAGE DROP across the 80 resistor?V 
80 

=

84.8 V

Suppose the potential difference (voltage) is equal to 120V. What is the total  

current?

1.06A



Compound (Complex) Circuits

= 84 .8V

I = 1 .06 A

V
T

= 120 V

I
T

= 1 .06 A

T
R = 113 .3

80 

V 
80

=

120 = 84 .8 + V

V = V + V
T  ( series  ) 1

= V = V
2 3

V
2 & 3

2 & 3

2 & 3

V
T ( parallel )

==

= I 
2 & 3

= I
1

I 
50 

100 

50

35 .2

100

35 .2
= =

I 
T ( series )

2 3
I = I + I

T ( parallel )

I

What is the VOLTAGE DROP across

the 100 and 50 resistor?

35.2 V Each!

What is the current across the

100 and 50 resistor?

0.352A

0.704 A

Add to  

1.06A



UNIT II

CIRCUIT ANALYSIS



Star-Delta Transformation



Equivalence
• Equivalence can be found on the basis that the resistance  

between any pair of terminals in the two circuits have to be  
the same, when the third terminal is left open.



• First take delta connection: between A and C,  
there are two parallel paths, one having a  
resistance of R2 and other having a resistance  
of ( R1+R3)

Hence resistance between terminal A and C is

= R2.(R1+R3)/[R2+( R1+R3)]



• Now take the star connection

The resistance between the same terminalA and C is (RA+RC)

Since terminal resistance have to be same so we musthave

(RA+RC) = R2.(R1+R3)/[R2+( R1+R3)] (1)

Similarly for terminals A and B, B and C, we can have the following

expression

(RA+RB) = R3.(R1+R2)/[R3+( R1+R2)] (2)

(RB+RC) = R1.(R2+R3)/[R1+( R2+R3)] (3)



DELTA  to STAR

Now subtracting 2 from 1 and adding the result to 3, we will get the following values

for R1,R2 and R3.

How to remember?

Resistance of each arm of star is given by the product of the  

resistance of the two delta sides that meet at its ends divided by  

the sum of the three delta resistance



STAR to DELTA

Multiplying 1 and 2, 2 and 3 , 3 and 1 and adding them together and

simplifying, we will have the following result.

How to remember: The equivalent delta resistance between any two point is  

given by the product of resistance taken two at a time divided by the opposite  

resistance in the star configuration.



Problem
• A delta-section of resistors is given in figure.  

Convert this into an equivalent star-section.

R
C

= 1 .5  .R
B

= 1 .0  ;Ans . : R
A

= 3  ;



Problem

The figure shows a  
network. The number  
on each branch  
represents the value of  
resistance in ohms.
Find the resistance  
between the points E  
and F.



Solution



Ans. : 5.6 Ω



Problem
Find the current drawn from the 5 volt battery inthe  
network shown in figure.



Solution :









Ans. : 0.974 A
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Mesh Analysis

• Mesh analysis applies KVL to find unknown currents.

• It is only applicable to planar circuits (a circuit that
can be drawn on a plane with no branches crossing
each other).

• A mesh is a loop that does not contain any other  
loops.

• The current through a mesh is known as the mesh  
current.

• Assume for simplicity that the circuit contains only  
voltage sources.
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Mesh Analysis Steps

1. Assign mesh currents i1, i2, i3, …il, to the l

meshes,

2. Apply KVL to each of the l meshes and use
Ohm’s law to express the voltages in terms
of the mesh currents,

3. Solve the l resulting simultaneous equations
to find the mesh currents.



Example

DC

DC

3
R

R2

v2

v4 R4

8

+

v3

+
+

+

+

R1

+ v1 -

-
+ v5 -

R5

+ v6 -

-

-

- v

-

1
Vs

s2
V

1 v7 R7
i 2

i

3
i

R6

i4

R8

Number of loops, l =Number of nodes, n =

Number of branches, b = l = b − n + 1

7

10

4

44



Example

DC

DC

3
R

R2

R8

R1

v1
v2

v4 R4

8

+ +

v3

+
+

+

+

-

-
+ v5 -

R5

+ v6 -

-

-

- v

-

1
Vs

s2
V

1 v7 R7
i 2

i

3
i

R6

i4
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Apply KVL to each mesh

−V + v + v − v = 0
s 2 1 7 5

v 
2   

− v 
6   

− v
7

= 0

v 
5   

+ v
s

+ v
3

= 0
1

Mesh 1:

Mesh 2:

Mesh 3:

v 
4   

+ v 
8   

− V
s

+ v
6

= 0
1

Mesh 4:
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DC

DC

R1

R3

7

R2

R6

R8

1
v

3
v v4 R4

8

+ +

+
+

+

v R

+

-

-
7

-

-

- v

-

s1
V

2
Vs

v2

i2

+ v6 -

i1

+ v5 -

R5

i3 4
i

1 7 5s2

−V + v + v − v = 0

2 6 7
v − v − v = 0

5 3s1

v + v + v = 0

Mesh 1:

Mesh 2:

Mesh 3:

v + v − V + v = 0
4 8 s1 6

Mesh 4:

7
−V + i R + ( i − i ) R

s 2 1 1 1 2 1 3 5
+ ( i − i ) R = 0

i R + ( i − i ) R
2 2 2 4 6 2 1 7

+ ( i − i ) R = 0

( i − i ) R + V + i R = 0
3 1 5 s1 3 3

i
4 

R 
4   

+ i
4 

R 
8   

− V
s

+ ( i
4  

− i
2 

) R
6

= 0
1

Mesh 1:

Mesh 2:

Mesh 3:

Mesh 4:

Express the voltage in terms of the mesh  

currents:
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−V + i R
s 2 1 1

+ ( i − i ) R
1 2 7 5

+ ( i − i ) R = 0
1 3

2 2 2 2
− i ) R + ( i

4 6 1 7
i R + ( i − i ) R = 0

+ V + i R = 0
s1 3 3

( i − i ) R
3 1 5

i
4 

R 
4 
+ i

4 
R

8

Mesh 1:

Mesh 2:

Mesh 3:

− V + ( i − i ) R = 0
s1 4 2 6

Mesh 4:

Mesh 1:

Mesh 2:

Mesh 3:

Mesh 4:

1 5
+ R ) i − R i

7 1 7 2 5 3 s2

( R + R − R i = V

7 1 2 6
+ R ) i − R i = 0

7 2 6 4
− R i + ( R + R

− R i + ( R + R ) i = −V
5 1 3 5 3 s1

− R i + ( R + R + R ) i = V
6  2 4 6 8 4 s1



48

Mesh 1:

Mesh 2:

Mesh 3:

Mesh 4:

1 5
+ R ) i − R i

7 1 7 2 5 3 s2

( R + R − R i = V

7 1 2 6
) i − R i = 0

7 2 6 4
− R i + ( R + R + R

s1

− R i + ( R + R ) i = −V
5 1 3 5 3

− R i + ( R + R + R ) i = V
6  2 4 6 8 4 s1

1 5 7 7 5 1
 V

s
2

− R

R 
2 
+ R 

6 
+ R

7

0

− R
6

0

− R
6

5

− R
7

3 5 3 s1

0

− R

0

− R

0 0
s

 R + R + R











  i 

R + R

V











  

 
i

2  =


 
 

0   i   − V

 

R 
4 
+ R 

6 
+ R 

8   i
4   1 
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R i = v

R

i

v

is an l x l symmetric resistance matrix

is a 1 x l vector of mesh currents

is a vector of voltages representing ―known‖voltages

s1

1 5 7 7 5 1
 V

s
2

− R
7

R 
2 
+ R 

6 
+ R

7

0

− R
6

0

− R

0

0 0

 − R 0 R + R 0   i 


5 3 5 3

  
− R

6 s

 R





+ R + R − R   i 

V

 −V












  

 
i

2  =


 
 1  R 

4 
+ R 

6 
+ R 

8   i
4



Writing the Mesh Equations by Inspection

27 7 5 1
− R

R 
2 
+ R 

6 
+ R

7

0

0

− R
6

0
5 3 5

6 4 s1

0

− R

0

− R

0 0

 V
s R + R + R

1 5

− R
7

  i 

R + R

− R











  





 
i2  =



  i   −V


s1 
3

  
 V R + R + R i

6 8   4   

DC

DC

3
R

R5

7
R

R2

v4 R4

5

v

8

+

v3

+
+

+

+

-
7

+ v -

-

-

- v

-

1
Vs

2
Vs

R1

+ v1 -

i1

50

v2

i2

+ v6 -

3
i

R6

i4

R8

•The matrix R is symmetric, rkj = rjk and all of the off-diagonal terms are negative or

zero.

The rkk terms are the sum of all resistances in mesh k.

The rkj terms are the negative sum of the resistances common to BOTH meshk

and mesh j.

The vk (the kth component of the vector v) = the algebraic sum of the independent

voltages in mesh k, with voltage rises taken as positive.
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MATLAB Solution of Mesh Equations

− 1
vi = R

 V
s

21 5 7 7 5 1

s1

− R

R 
2

+ R 
6  

+ R
7

0

− R
6

0

− R
6

5

− R
7

3 5

0

− R

0

− R

0 0
s

 R + R + R











R + R

V

  i 
  

 
i

2  =


 −V











3

  
 

0   i 

R 
4 

+ R 
6   

+ R 
8    i

4     1 

R i = v



Test with numbers

DC

DC

R3

7
4 R

4 R4

1

R8

3 2V

4V

R1

2

i 1

R2

3

i 2

2

R6

1

R5

i3

i 4

3
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 2 + 4 + 1



− 4

3 + 2 + 4

0

− 2

4

0− 4

− 1

0 2

0

− 2

0

  i
1   

 
i

  

  2    =  

  i   − 2 









    

 

− 1

0

3 + 1

0 2 + 4 + 1   i
4 
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Test with numbers

3

 2 + 4 + 1 − 4

3 + 2 + 4

0

− 2

4

0− 4

− 1

0 2

0

− 2

0

  i
1   

 
i

  

  2    =  

  i   − 2 











    

 

− 1

0

3 + 1

0 2 + 4 + 1   i
4 

3

4

0

2

  i
1   

  

  2    =  

  i   − 2 

 7 − 4 − 1 0


− 4 9 0 − 2 

 
i



 − 1 0 4 0


0 − 2 0 7

    

  i
4   

R i = v



Common symbols for indicating a referencenode,

(a) common ground, (b) ground, (c) chassis.
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1. Reference Node

The reference node is called the ground node
where V = 0

+

–

V 500

55

500

1k

500

500
I1 I2



2. Node Voltages

V1, V2, and V3 are unknowns for which we solve
using KCL

500

1k

500

500
I1 I2

2

V

11

V

2

V

3 3

500

56
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Steps of Nodal Analysis
1. Choose a reference (ground) node.

2. Assign node voltages to the other nodes.

3. Apply KCL to each node other than the reference  
node; express currents in terms of node voltages.

4. Solve the resulting system of linear equations for  
the nodal voltages.



Currents and Node Voltages

500 
500

V1

500V1 V2

V 
1  

− V
2

500 

V
1

58



3. KCL at Node 1

500

500
I1

V1 V2

500 

59

+
500 

V
1 

− V
2

V
1

1
I =



3. KCL at Node 2

500

1k

500 V2 V3V1

= 0

60

1k  500 500 

V
2 +

V
2

− V
3

V
2

− V
1

+



3. KCL at Node 3

2

V
+

3 2 3 = I
500  500 

V − V
500

500

I2

V2

61

V3
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Steps of Nodal Analysis
1. Choose a reference (ground) node.

2. Assign node voltages to the other nodes.

3. Apply KCL to each node other than the reference  
node; express currents in terms of node voltages.

4. Solve the resulting system of linear equations for  
the nodal voltages.



4. Summing Circuit Solution

Solution: V = 167I1 + 167I2

+

–

V 500

63

500

1k

500

500
I1 I2



Typical circuit for nodal analysis

64



I
2

+ i
2

= i
3

I
1

= I
2

+ i
1 
+ i

2

v
lowerhigher

− v

R
i =

or i = G v
3 3 2

65

2

R
3

3

22 12

1 2

R
2

2

or i = G v
1 1 1

1

R
1

1

v − 0

or i = G (v − v )

v − 0

i =

v − v
i =

i =



2

R
3

1 2

R
2

2

1 2

R
2

1

R
1

21

vv − v
I +

v v − v
 I = I +

=

+

2
 I − I = G v + G ( v − v )

1 2 1 1 2 1

I
2

= − G 
2 
( v

1 
− v 

2 
) + G 

3 
v

2




I
2

− I 
2  v

1 
=

 I
1

+ G   v  
3   2  G

2
− G

2

− G
2 G 

1
+ G

2

66



• Calculus the node voltage in the circuit shown  
in Fig. 3.3(a)
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• At node 1

1

2

PSUT 68

1 2

4
 5 =

i1 = i 2 + i3

+
v − v v − 0



• At node 2

6

69

4
 5 =

22 1

= i
1

+ i
5

i
2

+ i
4

+
v − v v − 0



• In matrix form:

 
5
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+
6 4 

−

+ −




 4

11

4

  2   
1  

v

  v
1 

=
5 

1

4
 2

 1 1



Practice
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Determine the voltage at the nodes in Fig. below
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• At node 1,

1 2

2

73

1 3

4
 3 =

3 = i
1 
+ i

x

+
v − v v − v



• At node 2

i
x

= i 
2 
+ i

3

74

+
1 2 = 23 2

2 8 4

v − v v − 0v − v




• At node 3

2 ( v − v )

PSUT 75

1 3 2 3  = 1 2

4 8 2

i
1 

+ i
2

= 2 i
x

v − v
+

v − v




• In matrix form:

80

 

0 

= 0


v 

3




1  
2 

1

  

4   v   3 

1 



 −











−

−−

3

8

8 


−  v

8

8

9

4

3

2

7

2

4

1

13



PSUT 77

3.3 Nodal Analysis with Voltage  
Sources

Case 1: The voltage source is connected  
between a nonreference node and the  
reference node: The nonreference node  
voltage is equal to the magnitude of voltage  
source and the number of unknown  
nonreference nodes is reduced by one.

Case 2: The voltage source is connected  
between two nonreferenced nodes: a  
generalized node (supernode) is formed.



3.3 Nodal Analysis with Voltage  
Sources

i + i = i + i 
1 4 2 3

v
1 
− v 

2 +
v

1 
− v 

3 =
v 

2
− 0 

+
v 

3
− 0

2 4 8 6

 v 
2

− v 
3

= 5

A circuit with a supernode.

PSUT 78
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A supernode is formed by enclosing a  
(dependent or independent) voltage source  
connected between two nonreference nodes  
and any elements connected in parallel with it.

The required two equations for regulating the  
two nonreference node voltages are obtained  
by the KCL of the supernode and the  
relationship of node voltages due to the  
voltage source.



Example 3.3
• For the circuit shown in Fig. 3.9, find the  

node voltages.
2 − 7 − i1 − i 2 = 0

v v
2 − 7 − 1 − 2 = 0

2 4

v
1 
− v 

2 
= − 2

i1 i2

80



Find the node voltages in the circuit below.

81



• At suopernode 1-2,

v
1  

− v
2

= 20

82

v − v v

= 1 4 + 1

3 2
+ 10

6

v 
3

− v
2



• At supernode 3-4,

3

83

6 1 4

v 
3 

− v
4

= 3 ( v
1 

− v 
4

)

v − v v v

= 3 2 + 4 + 3
v

1 
− v

4
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3.4 Mesh Analysis

• Mesh analysis: another procedure for  
analyzing circuits, applicable to planar circuit.

• A Mesh is a loop which does not contain any  
other loops within it



(a) A Planar circuit with crossing branches,

(b) The same circuit redrawn with no crossing branches.
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A nonplanar circuit.
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• Steps to Determine Mesh Currents:

1. Assign mesh currents i1, i2, .., in to the n meshes.

2. Apply KVL to each of the n meshes. Use Ohm’s  

law to express the voltages in terms of the mesh  
currents.

3. Solve the resulting n simultaneous equations to  
get the mesh currents.



Fig. 3.17
A circuit with two meshes.
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• Apply KVL to each mesh. For mesh 1,

• For mesh 2,

( R
1 

+ R 
3 
) i

1 
− R

3
i

2
= V

1

1 1 1 3 1 2
− V + R i + R ( i − i ) = 0

− R i + ( R + R ) i = −V
3  1 2 3 2 2

2 2 2 3 2 1
( i − i ) = 0R i + V + R



90

• Solve for the mesh currents.

• Use i for a mesh current and I for a branch  
current. It’s evident from Fig. 3.17that

+ R   i   − V 
3   2   2 

  i
1 

=
 V

1 



 R
1 

+ R
3

− R
3

− R
3

R
2

I
1

= i
1
, I

2
= i

2
, I

3
= i

1  
− i

2



• Find the branch current I1, I2, and I3 using  
mesh analysis.
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For mesh 1,

For mesh 2,

We can find i1 and i2 by substitution method

3 i
1 

− 2 i
2

= 1

− 15 + 5 i + 10 ( i − i ) + 10 = 0
1 1 2

i
1

= 2 i
2

− 1

+ 10 ( i − i ) − 10 = 0
2 1

6 i
2

+ 4 i
2

2
I = i , I = i − i

2 2 3 11 1

or Cramer’s rule. ThenI , = i ,



Use mesh analysis to find the current I0 in the  
circuit.
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• Apply KVL to each mesh. For mesh 1,

• For mesh 2,

11 i
1   

− 5 i
2

− 6 i
3

= 12

1 2 1 3
− 24 + 10 ( i − i ) + 12 ( i − i ) = 0

3
− 5 i + 19 i − 2 i = 0

1 2

1
− i ) = 0

22
− i ) + 10 ( i

2 3
24 i + 4 ( i

94
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4 ( i
1 
− i

2 
) + 12 ( i

3 
− i

1 
) + 4 ( i

3 
− i

2 
) = 0

− i − i + 2 i = 0
1 2 3

In matrix from become

we can calculus i1, i2 and i3 by Cramer’s rule,  
and find I0.

0

At

+ 12 ( i − i  ) + 4( i − i ) = 0
3 1 3 2

node A, I
0

= I 
1 
− i

2
,

For mesh 3, 4I

 11 − 5

 − 5 19

 − 1 − 1 2   3   

2

  i   0 

− 2  i  =  0 

− 6   i
1  12 



3.5 Mesh Analysis with Current  
Sources

A circuit with a current source.
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NETWORK TOPOLOGY



Graph Theory in Circuit Analysis

Suppose we wish to find the node voltages of the circuit below.

We know how to do this by hand.

For large-scale circuits, we may wish to do this via a computer

simulation (i.e. PSpice). We will need to express this circuit in

a standard form for input to the program.



Graph Theory in Circuit Analysis

Whether the circuit is input via a GUI or as a text file, at some

level the circuit will be represented as a graph, with elements

as edges and nodes as nodes.

For example, when entering a circuit into PSpice via a text file,

we number each node, and specify each element (edge) in the

circuit with its value and endpoints.



Graph of a Circuit

a

b c

d
e f

g

h

Here is a graph of the circuit. It is simply the circuit without elements.  

We refer to the lines above as edges (and the nodes are nodes).

The graph provides connectivity information. To actually solve the  

circuit using this graph, the types of elements forming the edges would  

need to be provided.



Trees and Co-Trees

a

b c

d
e f

g

h

A tree is defined as any set of edges in a graph that touches

every node without forming any closed paths.

Also known as Hamiltonian path!

Each tree has a co-tree, which is the set of edges not in the tree.



Cut Set

a

b c

d
e f

g

h

A cut set is a minimal set of edges that, when broken, breaks the  

graph into two completely separate parts (two groups of nodes.

Minimal means that a cut set cannot contain another smaller cut  

set that would break the graph into the same two parts.



Fundamental Cut Set

a

b c

d
e f

g

h

Suppose I am given a tree.

A fundamental cut set w.r.t. that tree is a cut set that only  

contains one branch of the tree.

There may be many fundamental cut sets w.r.t. a given tree.



Finding Fundamental Cut Sets Systematically

1 4 2 5 3

d

1. Redraw the graph with the tree in a straight line.

2. For each tree edge, form its fundamental cut set as follows:

2a) that tree edge is a member of this fundamental cut set

2b) cut that edge…what two groups of nodes are separated?

2c) the fundamental cut set also contains all edges in the co-tree

that connect these two groups.

a

b



Notes

◼ All of this can be done computationally.

◼ Graph algorithms

◼ Linear equation solution

◼ This algorithm shows why nodal analysis always works: you  

get n-1 independent linear equations in n-1 unknowns.

◼ The fundamental cut sets ensure independence of the

equations—unless the circuit has impossible elements.

◼ Each fundamental cut set contains a unique element (edge)  

from the tree. So each KCL equation provides new info.

◼ The elements themselves could destroy the independence  

(redundant dependent source, shorted voltage source…)  

but this won‘t happen in real life circuits.



Example

Find the node voltages using the graph method.

Circuit from Nilsson‘s Electric Circuits,Addison-Wesley, 1993.

1 2 0 V

20 

40 

5 

10 

0 . 7 5 I
X

I X



UNIT – III

SINGLE PHASE AC CIRCUITS AND ANALYSIS



Objectives: After completing this  
module, you should be able to:

• Write and apply equations for calculating the inductive and
capacitive reactances for inductors and capacitors in an ac circuit.

• Describe, with diagrams and equations, the phase relationships for  

circuits containing resistance, capacitance, and inductance.

• Describe the sinusoidal variation in ac current and voltage, and
calculate their effective values.



Alternating Currents

An alternating current such as that produced by a generator has no  
direction in the sense that direct current has. The magnitudes vary  
sinusoidally with time as given by:

Emax

imax

time, t
E = Emax sin 

i = imax sin 

AC-voltage and  
current



E E = Emax sin 

 1800 2700 3600

450 900 1350

R = Emax

Rotating Vector Description
The coordinate of the emf at any instant is the value of Emax sin 

Observe for incremental angles in steps of 450. Same is true for i.



450 900 1350

1800 2700 3600

E

Radius = Emax

E = Emax sin 



Example 1: For a particular device, the house ac voltage  
is 120-V and the ac current is 10 A. What are their  

maximum values?

ieff = 0.707 imax Veff = 0.707 Vmax

imax = 14.14 A Vmax = 170 V

-170 V and the currentThe ac voltage actually varies from +170 V to  
from 14.1 A to –14.1 A.



Pure Resistance in AC Circuits

A

R

V

a.c. Source

Voltage and current are in phase, and Ohm’s law applies for effective  
currents and voltages.

Ohm’s law: Veff = ieffR

Vmax

imax

Voltage

Current



AC and Inductors

0.63

I

I

i
Inductor

Current Rise

 Time, t

The voltage V peaks first, causing rapid rise in i current which then peaks as  
the emf goes to zero. Voltage leads (peaks before) the current by 900.

Voltage and current are out of phase.

0.37I

I
i Inductor

Current Decay

 Time, t



A Pure Inductor in AC Circuit

A

L

V

Vmax

imax

Voltage

Current

a.c.

The voltage peaks 900 before the current peaks. One builds as the other  
falls and vice versa.

The reactance may be defined as the nonresistive opposition to the flow of ac  
current.



Inductive Reactance

A

L

V

The back emf induced by a changing  
current provides opposition to  
current, called inductive reactance XL.

a.c.

Such losses are temporary, however, since the current changes direction,
periodically re-supplying energy so that no net power is lost in one cycle.

Inductive reactance XL is a function of both the inductance and the
frequency of the ac current.



Calculating Inductive Reactance

A

L

V

a.c.

Inductive Reactance:

X
L

= 2 fL U n it is th e 

O hm 's la w : V
L

= i X
L

The voltage reading V in the above circuit at the instant the ac current is i
can be found from the inductance in H and the frequency in Hz.

V
L

= i ( 2 fL ) Ohm’s law: VL = ieffXL



A V

120 V, 60 Hz

Example 2: A coil having an inductance of 0.6 H is  
connected to a 120-V, 60 Hz ac source. Neglecting  

resistance, what is the effective current through the  
coil?

Reactance: XL = 2fL L = 0.6 H

XL = 2(60 Hz)(0.6 H)

XL = 226 

ieff = 0.531 A

Show that the peak current is Imax = 0.750 A



AC and Capacitance

Time, t

Qmax

q

Rise in Charge

Capacitor



0.63 I

Time, t

I
i

Current Decay

Capacitor



0.37 I

The voltage V peaks ¼ of a cycle after the current i reaches its maximum.

The voltage lags the current. Current i and V out of phase.



A Pure Capacitor in AC Circuit
Vmax

imax

Voltage  

CurrentA V

C

a.c.

The voltage peaks 900 after the current peaks. One builds as the other falls  
and vice versa.

The diminishing current i builds charge on C which increases the back emf

of VC.



Capacitive Reactance

Capacitive reactance XC is affected by both the capacitance and the
frequency of the ac current.

A V

a.c.

No net power is lost in a complete cycle, even though the capacitor does provide
nonresistive opposition (reactance) to the flow of ac current.

CEnergy gains and losses are also  
temporary for capacitors due to the  
constantly changing ac current.



Calculating Inductive Reactance
Capacitive Reactance:

C

1

2 fC
X = U n it is th e 

O h m 's la w : V
C

= iX
C

The voltage reading V in the above circuit at the instant the ac current is i
can be found from the inductance in F and the frequency in Hz.

L

i
V =

2 fL

A V

a.c.

C

Ohm’s law: VC = ieffXC



Series LRC Circuits

VR VC

CR
a.c.

L

VL

VT

A

Series ac circuit

Consider an inductor L, a capacitor C, and a resistor R all  
connected in series with an ac source. The instantaneous current  

and voltages can be measured with meters.



Calculating Total Source Voltage



VR

V - VL C

VT

Source voltage
Treating as vectors, we find:

2
)

2

T R L C
V = V + (V − V

L C

V
R

V − V
t a n  =

Now recall that: VR = iR; VL = iXL; and VC = iVC

Substitution into the above voltage equation gives:

2 2
V

T
= i R + ( X − X )

L C



Impedance in an AC Circuit



R

XL - XC
Z

Impedance
T L C

R
2

)
2

V = i + ( X − X

Impedance Z is defined:

)
2

L C
R

2
Z = + ( X − X

Ohm’s law for ac current and impedance:
T

T

V

Z
V = iZ o r i =

The impedance is the combined opposition to ac current consisting of both  
resistance and reactance.



A

0.5 H

60 Hz 60 

120 V
8 F

Example 4: Find the effective current and the phase  
angle for the previous example.

XL  = 226  XC  =332  R = 60  Z = 122 

ieff = 0.985 A

Next we find the phase angle:



R

XL - XC
Z

Impedance
XL – XC = 226 – 332 = -106 

R = 60 

R

X 
L

− X
C

ta n  =

Continued . . .



Example 4 (Cont.): Find the phase angle  for the previous  
example.

-106 

Z

60 
XL – XC = 226 – 332 = -106 

R = 60 
X 

L
− X

C

R
ta n  =

 = -60.50

The negative phase angle means that the ac voltage lags the current  
by 60.50. This is known as a capacitive circuit.



Resonant Frequency

R
XC

XL XL = XC

)
2

L C
R

2
Z = + ( X − X = R

1

2 LC

f
r

=
Resonant fr XL =
XC



Example 5: Find the resonant frequency for the  
previous circuit example: L = .5 H, C = 8 F

1

r

2 LC

f =

Resonant fr = 79.6 Hz

At resonant frequency, there is zero reactance (only resistance) and the circuit has
a phase angle of zero.

A

? Hz 60 

120 V
8 F

Resonance XL  =XC

0.5 H



Power in an AC Circuit

P = iV cos 



R

XL - XC
Z

Impedance

P lost in R only P = i2R

The fraction Cos  is known as the power factor.



Example 6: What is the average power loss for the  
previous example: V = 120 V,  = -60.50, i = 90.5 A, and R

= 60 .

The higher the power factor, the more efficient is the circuit in its use
of ac power.

A

? Hz 60 

120 V
8 F

Resonance XL  =XC

0.5 H

P = i2R = (0.0905 A)2(60 )

Average P = 0.491 W

The power factor is: Cos 60.50

Cos  = 0.492 or 49.2%



The Transformer

R

a.c.

Np Ns

Transformer


E

P
= − N

P

 t


E

S
= − N

S

 t

Induced emf’s  
are:



Transformers (Continued):

R

a.c.

Np Ns

Transformer 
E

P
= − N

P

 t


E

S
= − N

S

 t

Recognizing that /t is the same in each coil, we divide first relation by  
second and obtain:

The transformer equation:
=

E P N P

E S N S



Example 7: A generator produces 10 A at 600 V. The primary  
coil in a transformer has 20 turns. How many secondary turns  

are needed to step up the voltage to 2400 V?

R

a.c.

Np Ns

I = 10 A; Vp = 600V

20
turns

V
P

N
P

V S N S

=

NS = 80 turns

This is a step-up transformer; reversing coils will make it a step-down  
transformer.



Transformer Efficiency
T

here is no power gain in stepping up the voltage since voltage is increased by  
reducing current. In an ideal transformer with no internal losses:

i E
E

P
i

P
= E

S
i

S
o r

P  = S

i
s

E
P

An ideal transformer:

R

a.c.

Np Ns

Ideal Transformer

The above equation assumes no internal energy losses due to heat or flux
changes. Actual efficiencies are usually between 90 and 100%.



Summary

Effective current: ieff = 0.707 imax

Effective voltage: Veff = 0.707 Vmax

Inductive Reactance:

X
L

= 2 fL U n it is th e 

O hm 's la w : V
L

= i X
L

Capacitive Reactance:

1

2 fC
X

C
= U n it is th e 

O h m 's la w : V
C

= iX
C



Summary (Cont.)

2
)

2

T R L C
V = V + (V − V

L C

V
R

V − V
ta n  =

)
2

L C
R

2
Z = + ( X − X

T

T

V

Z
V = iZ o r i =

L C

R

X − X
ta n  =

1

r

2 LC

f =



Summary (Cont.)

In terms of ac voltage:

P = iV cos  P = i2R

Power in AC Circuits:

In terms of the resistance R:

S S
N

=
E P N P

E
P P S S

E i = E i

Transformers:



UNIT- IV

RESONANCE AND MAGNETIC CIRCUIT
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Resonance In Electric Circuits


Any passive electric circuit will resonate if it has an inductor  

and capacitor.

 Resonance is characterized by the input voltage and current

being in phase. The driving point impedance (or admittance)

is completely real when this condition exists.

 In this presentation we will consider (a) series resonance, and

(b) parallel resonance.



Series Resonance

Consider the series RLC circuit shown below.

C

R L

I

+

V _

V = VM 0

The input impedance is given by:

)
1

w C
Z  = R + j ( w L −

The magnitude of the circuit current is;

1 2

)

m
V

R
2

w C

I = | I | =

+ ( w L −

140



Resonance occurs when,

1
wL =

wC

At resonance we designate w as wo and write;

o

1
w =

LC

141

This is an important equation to remember. It applies to both series

And parallel resonant circuits.



The magnitude of the current response for the series resonance circuit  

is as shown below.

V
m

R

V
m

2 R

w

|I|

w1 wo w2

Bandwidth:

BW = wBW = w2 –w1

Half power point

142



The peak power delivered to the circuit is;

2

V
m

R
P =

The so-called half-power is given when m
V

2 R

I = .

We find the frequencies, w1 and w2, at which this half-power  

occurs by using;

1 2

143

)R
2

w C
2 R = + ( w L −



After some insightful algebra one will find two frequencies at which  

the previous equation is satisfied, they are:

2

1

1RR

2 L

 
w = − + + 

 2 L  L C

an

d
2

2

1RR

2 L

 
w = + + 

 2 L  L C

The two half-power frequencies are related to the resonant frequencyby

w
o

= w
1
w

2

144



The bandwidth of the series resonant circuit is givenby;

2 1b

R 

L
B W = w = w − w =

We define the Q (quality factor) of the circuit as;

o
w L

R

1 1

w
o

R C R
Q = = =

 L 
 
 C 

Using Q, we can write the bandwidthas;

o
w

B W =
Q

These are all important relationships.
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An Observation:

If Q > 10, one can safely use the approximation;

1

146

2o o

B W

2

B W

2
w = w − a n d w = w +

These are useful approximations.



An Observation:

By using Q = woL/R in the equations for w1and w2 wehave;

2

1

o

 2

 1 
w = w +  

 2 Q  2Q





+ 1 




1 o
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2

 1 


−1
w = w 

 2Q





+   + 1 

 2 Q  


and



In order to get some feel for how the numerical value of Q influences

the resonant and also get a better appreciation of the s-plane, we consider  

the following example.

It is easy to show the following for the series RLCcircuit.

1

148

s
2

I ( s ) 1

1V ( s ) Z ( s )

s

L

R
+ s +

L LC

= =

In the following example, three cases for the about transfer function

will be considered. We will keep wo the same for all three cases.

The numerator gain,k, will (a) first be set k to 2 for the three cases, then

(b) the value of k will be set so that each response is 1 at resonance.



An Example Illustrating Resonance:

The 3 transfer functions considered are:

Case 1:

Case 2:

Case 3:

s
2

+ 2 s + 4 0 0

ks

s
2

+ 5 s + 4 0 0

ks

s
2

149

+ 1 0 s + 4 0 0

ks
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An Example Illustrating Resonance:

The poles for the three cases are given below.

Case 1:

Case 2:

Case 3:

s
2

+ 2 s + 4 0 0 = ( s + 1 + j1 9 .9 7 ) ( s + 1 − j1 9 .9 7 )

s
2

+ 5 s + 4 0 0 = ( s + 2 .5 + j1 9 .8 4 )( s + 2 .5 − j1 9 .8 4 )

s
2

+ 1 0 s + 4 0 0 = ( s + 5 + j1 9 .3 6 )( s + 5 − j1 9 .3 6 )



Comments:

Observe the denominator of the CE equation.

s
2 1R

+ s +
L LC

Compare to actual characteristic equation for Case 1:

s
2

+ 2 s + 4 0 0

2

w
o

= 400 w = 20

R
BW = = 2

L

= 10

151

w
o

Q =
B W

rad/sec

rad/sec
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Poles and Zeros In the s-plane:

s-plane

jw axis

 axis

0

0

20

-20
xx

x
x

x

(2)

x

( 3)

(1)

(2)( 3)

(1)

-5 -2.5 -1
Note the location of the poles

for the three cases. Also note  

there is a zero at the origin.
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Comments:

The frequency response starts at the origin in the s-plane.  

At the origin the transfer function is zero because there is a  

zero at the origin.

As you get closer and closer to the complex pole, which  

has a j parts in the neighborhood of 20, the response starts  

to increase.

The response continues to increase until we reach w =20.  

From there on the response decreases.

We should be able to reason through why the response

has the above characteristics, using a graphical approach.



Matlab Program For The Study:

% name of program is freqtest.m

% written for 202 S2002, wlg

%CASE ONE DATA:

K = 2;

num1 = [K 0];

den1 = [1 2 400];

num2 = [K 0];  

den2 = [1 5 400];

num3 = [K 0];

den3 = [1 10 400];

w = .1:.1:60;

grid

H1 = bode(num1,den1,w);

magH1=abs(H1);

H2 = bode(num2,den2,w);  

magH2=abs(H2);

H3 = bode(num3,den3,w);  

magH3=abs(H3);

plot(w,magH1, w, magH2, w,magH3)  

grid

xlabel('w(rad/sec)')  

ylabel('Amplitude')  

gtext('Q = 10, 4, 2')
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w(rad/sec)

40 50 60
0
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0.3

0.2

0.1

Q = 10, 4,2

A
m

p
lit

u
d
e

Program Output



Comments: cont.

From earlier work:

2

 1 
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w , w = w
1 2


1


2 Q


 



+ 1 




o


 2Q


+

With Q = 10, this gives;

w1= 19.51 rad/sec, w2 = 20.51 rad/sec

Compare this to the approximation:

w1 = w0 – BW = 20 – 1 = 19 rad/sec, w2 = 21 rad/sec

So basically we can find all the series resonant parameters

if we are given the numerical form of the CE of the transfer

function.



Next Case: Normalize all responses to 1 at wo

0
0 10 20 40 50 60

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

30

w(rad/sec)
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Q = 10, 4, 2

A
m

p
lit

u
d
e



Three dB Calculations:

Now we use the analytical expressions to calculate w1 and w2.  

We will then compare these values to what we find from the  

Matlab simulation.

Using the following equations with Q =2,



  + 1
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  1
2



 2 Q 
oo

1
w , w = w  + w

1 2


2 Q

we find,

w1 = 15.62 rad/sec

w2 = 21.62 rad/sec



Checking w1 and w2

15.3000 0.6779

15.4000 0.6871

15.5000 0.6964

15.6000 0.7057

15.7000 0.7150

15.8000 0.7244

w1

25.3000 0.7254

25.4000 0.7195

25.5000 0.7137

25.6000 0.7080

25.7000 0.7023

25.8000 0.6967

25.9000 0.6912

w

159

2

This verifies the previous calculations.

Now we shall look at Parallel Resonance.

(cut-outs from the simulation)



Background

Consider the circuits shown below:

V

I R L C

I

R L

CV

jwL


1 




R

 1
I = V + jwC +
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1 




V = I R + jwL +

jwC



1 


 R jwL


I = V + jwC +

 1




1 




V = I R + jwL +

jwC

We notice the above equations are the same provided:

VI

R
R

1

CL

If we make the inner-change,

then one equation becomes

the same as the other.

For such case, we say the one  

circuit is the dual of the other.

Duality

If we make the inner-change,  

then one equation becomes  

the same as the other.
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For such case, we say the one  

circuit is the dual of the other.



Parallel Resonance

Background

What this means is that for all the equations we have

derived for the parallel resonant circuit, we can use  

for the series resonant circuit provided we make  

the substitutions:

replaced beR
1

R

L replaced by C

C replaced by L

What this means is that for all the equations we have

derived for the parallel resonant circuit, we can use  

for the series resonant circuit provided we make  

the substitutions:
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What this means is that for all the equations we have  

derived for the parallel resonant circuit, we can use  

for the series resonant circuit provided we make

the substitutions:



Parallel Resonance Series Resonance

R

w L
Q =

O

LC
O

w =
1

LC
w =

O

1

o
Q = w RC

R 

L
BW = (w

BW
− w ) = w =

12 RC
BW

BW = w =
1








2L

w , w =  + 


+
R 1

 2 L  LC

2


1 2

 R 








2 RC

+


1
+w , w =

LC

1


2 RC

1
2


1 2

1 2
w w, w











  + 1

2

 2 Q  2Q

1
+

 1 

1 2
w , w = w

o
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  + 1
o

2

1  1 
w , w = w  +

1 2

 2 Q  2 Q 



Example 1: Determine the resonant frequency for the circuit below.

( − w
2

LRC + jwL )  

(1 − w 
2

LC ) + jwRC
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jwC
R + jwL +

jwC
jwL ( R +

I N
Z = =

1

)
1

At resonance, the phase angle of Z must be equal to zero.



( − w
2

LRC + jwL )  

(1 − w
2

LC ) + jwRC

Analysis

For zero phase;

(1 − w 
2

LC

wRC

( − w
2

LCR )

wL
=

This gives;

2

w
2

LC − w 
2  

R
2

C = 1

or

2

)
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o

1

( LC − R 
2

C
w =



Example 2:

A parallel RLC resonant circuit has a resonant frequency admittanceof

2x10-2 S(mohs). The Q of the circuit is 50, and the resonant frequency is

10,000 rad/sec. Calculate the values of R, L, and C. Find the half-power

frequencies and the bandwidth.

First, R = 1/G = 1/(0.02) = 50 ohms.

Second, from
w L

Q = O

R

find L = 0.25 H.

, we solve for L, knowing Q, R, and wo to

Third, we can use = 100  F
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Q
C =

O
w R 10 ,000 x 50

50
=

A parallel RLC resonant circuit has a resonant frequency admittanceof

2x10-2 S(mohs). The Q of the circuit is 50, and the resonant frequency is

10,000 rad/sec. Calculate the values of R, L, and C. Find the half-power

frequencies and the bandwidth.

A series RLC resonant circuit has a resonant frequency admittance of  

2x10-2 S(mohs). The Q of the circuit is 50, and the resonant frequency is  

10,000 rad/sec.  Calculate the values of R, L, and C. Find the half-power  

frequencies and the bandwidth.



Example 2: (continued)

Fourth: We can use / sec
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= 200 rad
50

w 1x10
4

o =
Q

BW
w =

and

Fifth: Use the approximations;

w1 = wo - 0.5wBW = 10,000 – 100 = 9,900 rad/sec  

w2 =  wo - 0.5wBW = 10,000 + 100 = 10,100 rad/sec



Peak Voltages and Resonance:

VS

R L

C

+

_ I

VR

+
VL

+

+

VC

_

_ _

We know the following:

 

1
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LC

When w = wo = , VS and I are in phase, the driving point impedance

is purely real and equal to R.

 
A plot of |I| shows that it is maximum at w = wo. We know the standard  

equations for series resonance applies: Q, wBW, etc.



Reflection:

A question that arises is what is the nature of VR, VL, and VC? A little  

reflection shows that VR is a peak value at wo. But we are not sure  

about the other two voltages. We know that at resonance they are equal  

and they have a magnitude of QxVS.

 

 

 

m a x 2o
w

1

2Q
= w 1 −

The above being true, we might ask, what is the frequency at whichthe  

voltage across the inductor is a maximum?

169

We answer this question by simulation

Irwin shows that the frequency at which the voltage across the capacitor  

is a maximum is given by;



Series RLC Transfer Functions:

The following transfer functions apply to the series RLC circuit.

1

V
C  

( s )
= LC

2
S

V ( s)

LC

R 1
s + s +

L

s
2

2

V ( s)

1

L =

S
V ( s) R 

L
s + s +

LC

2
S

V ( s)

R
s

V ( s)

R 1

L L C

R = L

s + s +
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Parameter Selection:

We select values of R, L. and C for this first case so that Q = 2 and

wo = 2000 rad/sec. Appropriate values are; R = 50 ohms, L = .05 H,

C = 5F. The transfer functions become as follows:

4 x1 0
6

s
2
+ 1 0 0 0 s + 4 x1 0

6

S

V
C =

V

s
2

S
V s

2
+ 1 0 0 0 s + 4 x1 0

6

V
L =

s
2
+ 1 0 0 0 s + 4 x1 0

6

1 0 0 0 sV
R

S
V

=
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Matlab Simulation:

% program is freqcompare.m

% written for 202 S2002, wlg

numC = 4e+6;

denC = [1 1000 4e+6];

numL = [1 0 0];

denL = [1 1000 4e+6];

numR = [1000 0];

denR = [1 1000 4e+6];

w = 200:1:4000;

grid

HC = bode(numC,denC,w);

magHC = abs(HC);

grid

HC = bode(numC,denC,w);  

magHC = abs(HC);

HL = bode(numL,denL,w);  

magHL = abs(HL);

HR = bode(numR,denR,w);  

magHR = abs(HR);

plot(w,magHC,'k-', w, magHL,'k--', w, magHR, 'k:')  

grid

xlabel('w(rad/sec)')  

ylabel('Amplitude')

title(' Rsesponse for RLC series circuit, Q =2')

gtext('VC')

gtext('VL')

gtext(' VR')
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Analysis of the problem:

VS

R=50  L=5

mH
C=5 F

+

_ I

VR

+
VL

+

+

VC

_

_ _

Given the previous circuit. Find Q, w0, wmax, |Vc| at wo, and |Vc| atwmax

Solution: = 2000 rad / sec
11

− 6

50 x10 
− 2 

x 5 x10LC
O

w = =

= 2
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50

w L 2 x10 
3 

x 5x10
−2

Q = O=
R



Problem Solution:

oOMAX
= 0 .9354 w

1

2 Q
2

w = w 1 −

( peak )| V | at w = Q | V | = 2 x1 = 2 volts
R O S

= 2 .066 volts ( peak ) )
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1 0 .968

4 Q
2

Qx | V | 2
S

MAXC
| V | at w = =

1 −

Now check the computer printout.



Problem Solution (Simulation):

1.0e+003 *

1.8600000 0.002065141

1.8620000 0.002065292

1.8640000 0.002065411

1.8660000 0.002065501

1.8680000 0.002065560

1.8700000 0.002065588
1.8720000 0.002065585

1.8740000 0.002065552

1.8760000 0.002065487

1.8780000 0.002065392

1.8800000 0.002065265

1.8820000 0.002065107
1.8840000 0.002064917

Maximum
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Simulation Results:

0
0 500 1000 1500 2000 2500 3000 3500 4000

w(rad/sec)
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Observations From The Study:

 

 

 

 

The voltage across the capacitor and inductor for a series RLC circuit  

is not at peak values at resonance for small Q (Q <3).

Even for Q<3, the voltages across the capacitor and inductor are

equal at resonance and their values will be QxVS.

For Q>10, the voltages across the capacitors are for all practical  

purposes at their peak values and will be QxVS.

Regardless of the value of Q, the voltage across the resistor

reaches its peak value at w = wo.

For high Q, the equations discussed for series RLC resonance

can be applied to any voltage in the RLC circuit. For Q<3, this

is not true.

 



Given the following circuit:

I

+

_

+

179

_

VC

R

L

 

 

We want to find the frequency, wr, at which the transfer function

for V/I will resonate.

The transfer function will exhibit resonance when the phaseangle  

between V and I are zero.



The desired transfer functions is;

=
V (1 / s C ) ( R + s L )

I R + s L + 1 / s C

This equation can be simplified to;

=
V R + s L

I L C s 
2 
+ R C s + 1

With s jw

=

180

V R + jw L

I (1 − w 
2 
L C ) + jw R



Resonant Condition:

For the previous transfer function to be at a resonant point,

the phase angle of the numerator must be equal to the phase angle

of the denominator.

  = 
n u m d em

or,

num

R
 = ta n 

− 1  wL 

 

 , den
 = ta n 

− 1 


(1 − w 

2 
L C )



w R C 

 

.

Therefore;

w L
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w RC
=

R (1 − w 
2 
L C )



Resonant Condition Analysis:

Canceling the w’s in the numerator and cross multiplying gives,

L (1 − w 
2  

L C ) = R 
2
C o r w 

2 
L

2 
C = L − R 

2 
C

This gives,

2r

R
2

1

L C L
w = −

Notice that if the ratio of R/L is small compared to 1/LC, wehave

1

LC

182

w = w =
r o



Resonant Condition Analysis:

What is the significance of wr and wo in the previous two equations?

Clearly wr is a lower frequency of the two. To answer this question, consider

the following example.

Given the following circuit with the indicated parameters. Write a

Matlab program that will determine the frequency response of the

transfer function of the voltage to the current as indicated.

I

+

_

+

183

_

VC

R

L
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Resonant Condition Analysis: Matlab Simulation:

We consider two cases:

Case 1:

R = 3 ohms

C = 6.25x10-5 F

L = 0.01 H

Case 2:

R = 1 ohms

C = 6.25x10-5 F

L = 0.01 H

wr= 2646 rad/sec wr= 3873 rad/sec

For both cases,

wo = 4000 rad/sec



Resonant Condition Analysis: Matlab Simulation:

The transfer functions to be simulated are given below.

0 .0 0 1 s + 3
=

V

I 6 .2 5 x1 0
− 8

s
2
+ 1 .8 7 5 x1 0

− 7
+ 1

Case 1:

Case 2:

0 .0 0 1 s + 1

185

=
V

I 6 .2 5 x1 0
− 8

s
2
+ 6 .2 5 x1 0

− 5
+ 1
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What can be learned from this example?

 

 

 

wr does not seem to have much meaning in this problem.

What is wr if R = 3.99 ohms?

Just because a circuit is operated at the resonant frequency  

does not mean it will have a peak in the response at the  

frequency.

For circuits that are fairly complicated and can resonant,  

It is probably easier to use a simulation program similar to  

Matlab to find out what is going on in the circuit.



MAGNETIC CIRCUITS



Magnetic and Electromagnetic Fields

189
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Magnetic  

Materials

Iron, Cobalt and Nickel and various other alloys and  

compounds made using these three basic elements



Electric Current and Magnetic  

Field

191



A Few Definitions Related to  

Electromagnetic Field

 (Unit is Weber (Wb)) = Magnetic Flux Crossing a Surfaceof

Area ‗A‘ in m2.

B (Unit is Tesla (T)) = Magnetic Flux Density = /A

H (Unit is Amp/m) = Magnetic Field Intensity=
B
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 = permeability = o r

o = 4*10-7 H/m (H Henry) = Permeability of free space (air)

r = Relative Permeability

r >> 1 for Magnetic Material



Ampére‘s Law
The line integral of the magnetic field intensity around a closed path is

equal to the sum of the currents flowing through the area enclosed by

the path.
→ →

 H . dl =  i

dl cos 

193

→ → → →

H . dl = H
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Example of Ampére‘s Law
Find the magnetic field along a circular path around an infinitely long

Conductor carrying ‗I‘ ampere ofcurrent.

B,H

r
900

dl

Since both
→

dl and
→

H
are perpendicular to radius ‗r‘ at any point ‗A‘

on the circular path, the angle  is zero between them at all points. Also since all  

the points on the circular path are equidistant from the current carrying  

conductor is constant at all points o→n the circle

H

H 2  r = I

→→ → → →

 H . dl = H  dl =
or

I→

H =

2 r
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•They are basically ferromagnetic structures(mostly Iron,Cobalt,

Nickel alloys and compounds) with coils wound around them

•Because of high permeability most of the magnetic flux isconfined

within the magnetic circuit

•Thus is always aligned with

→ →

•ExampleHs: Transformers,Actuators, Electrodml (agn=e0ts), Electric Machines

Magnetic Circuits



l= mean length

N

I

d

196

w

Magnetic Circuits (1)



F =NI= Magneto Motive Force or MMF = # of turns * Current passing

through it

F = NI = Hl (why!)

l  = NI
B


or l  = NI

A


or

or

l /(  A )

NI
 =
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NI
 =or

Magnetic Circuits (2)

 = Reluctance of magnetic path



Analogy Between Magnetic and Electr

Circuits

F =MMF is analogous to Electromotive force (EMF) =E

 = Flux is analogous to I = Current

 = Reluctance is analogous to R = Resistance

P = Permeance


=

1
= Analogous to conductance 1

G =

R

198



H

B
B

H

Linear

199

knee

saturation

Magnetization curve

(linear) (Ideal)

Magnetization curve

(non-linear) (Actual)  

(see also Fig. 1.6 in the text)

Magnetization Curves
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•One can linearize magnetic circuits by including air-gaps

•However that would cause a large increase in ampere-turn  

requirements.

Ex: Transformers don‘t have air-gaps. They have very little

magnetizing current (5% of full load)

Induction motors have air-gaps. They have large magnetizing  

current (30-50%)

Question: why induction motors have air –gap and

transformers don‘t?

Magnetization Curves(2)



Magnetization Circuits with Air-

gap

N

i

d

wlc

lg

c c

lc

c
 A

 =

g g

l g

g
 A

 =

g

201

c

Ni

 + 
 =

Ni = H c l c + H g l g
fringing )Ac = A g = wd ( Neglecting



N

i

wlc

202

Fringing

With large air-gaps, flux tends to leak outside the air –gap. This is

called fringing which increases the effective flux area. One way to

approximate this increase is:

w n = w  + l g  ; d n = d  + l g  ; A gn = w n d n
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Example of Magnetic Circuits On  

Greenboard



Magnetization Curves (for examples)
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Inductance(L)

I
L = =

 N 

I



N
2

 =
NI

 L =



Thus inductance depends on the geometry of construction

Definition: Flux Linkage() per unit of current(I) in a magnetic circuit
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Example of Inductances On  

Greenboard
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How to find exact Inductances with  

magnetic circuit with finite thickness  

(say a torroid with finite thickness)

see problem 1.16



Faraday‘s law of Electromagnetic  

Induction
The EMF (Electromotive Force) induced in a magnetic circuit is

Equal to the rate of change of flux linked with the circuit

dt

d
= N

dt dt
e = =

d  d ( N  )

Li = N

dt

208

di
= L

dt

dLi
 e =



Lenz‘s Law

The polarity of the induced voltage is given by Lenz‘s law

The polarity of the induced voltage will be such as to oppose the very

cause to which it is due

Thus sometimes we write

dt

209

di
= −L

dt

dLi
 e = −



V = Vm Cos(t)

 =m Sin(t)

Cos (  t )
dt

d 
e = − N

mmm
= − N   Cos  (  t ) = − E Cos (  t ) = − V

Ideally

A precursor to Transformer

Sin (  t )
L

N 
i =

m

m = I
L

N  Sin (  t )
=



i 
+

−

e
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A Precursor to Transformer(2)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

100

50

0

-50

-100

100

50

0

-50

V

-100
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

e

-60
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

60

40
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0

-20
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Example on excitation of magnetic  

circuit with sinusoidal flux On  

greenboard



213

Example on excitation of magnetic  

circuit with square flux on greenboard  

(Important for Switched Mode Power  

Supplies)
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What will non-linearity in magnetic  

circuit lead to?

•It would cause distortion in current waveforms since by Faraday‘s  

and Lenz‘s law the induced voltage always has to balance out the  

applied voltage that happens to be sinusoidal



Sinusoidal voltage non-

sinusoidal current

215
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Iron Losses in Magnetic Circuit

There are two types of iron losses

a) Hysteresis losses

b) Eddy Current Losses

Total iron loss is the sum of these two losses



Hysteresis losses

Br

B

Br = Retentive flux density (due to property of retentivity)  

Hc= Coercive field intensity (due to property of coercivity)

1 21 2

H

i

t3

3

0

4

4

5

5

B-H or Hysteresis loop

saturation

i

knee point

Hc

1

T

217

f =

f =frequency

of sine source

0
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Hysteresis losses (2)
•The lagging phenomenon of B behind H is called hysteresis

•The tip of hysteresis loops can be joined to obtain the  

magnetization characteristics

•In each of the current cycle the energy lost in the core is

proportional to the area of the B-H loop

•Energy lost/cycle = Vcore

 HdB

• Ph = Hysteresis loss = fVcore  HdB = khBn
maxf

kh = Constant, n = 1.5-2.5, Bmax= Peak flux density



Eddy current loss

flux Current

Laminations

flux

Because of time variation of flux flowing through the magnetic  

material as shown, current is induced in the magnetic material,  

following Faraday‘s law. This current is called eddy current.

The direction of the current is determined by Lenz‘s law. This current  

can be reduced by using laminated (thin sheet) iron structure, with  

Insulation between the laminations.

•Pe  = Eddy current loss = keB2
maxf

219

ke = Constant Bmax= Peak flux density,
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Permanent Magnets

• Alloys of Iron, Cobalt and Nickle

•Have large B-H loops, with large Br and–Hc

•Due to heat treatment becomes mechanically hard and arethus  

called HARD IRON

•Field intensity is determined by the coercive field required to

demagnetize it

•Operating points defined by Bm,Hm in the second quadrant of  

the B-H loop



SOFT IRON

PM

SOFT IRON

lm
lg

221

Using Permanent Magnets for  

providing magnetic field
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Designing Permanent Magnets
•The key issue here is to minimize the volume Vm of material  

required for setting up a required Bg in a given air gap

•It can be shown that Vm =Bg
2Vg/μoBmHm (see derivation in text)  

where Vg= Aglg Volume of air-gap,lg = length of air-gap, Ag =area  

of air-gap

•Thus by maximizing Bm, Hm product Vm can be minimized

•Once Bm, Hm at the maximum Bm, Hm product point are known, lm =lengthof

permanent magnet, Am =area of permanent magnet can be found as

•lm=-lgHg/Hm (applying ampère‘s law),

•Am=BgAg/Bm (same flux flows through PM as well as air-gap)



Finding the maximum product point

-1000
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B= mH+c, m and c are constants.

To find  maximum BH product, we need to differentiate

BH=mH2+cH;

and set it equal to 0. Thus we get

Hm=-c/2m. and Bm =c/2

Finding the maximum product point (
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Finding the maximum product point (

Answer:

Bm=0.64 T, Hm = -475 kA/m



UNIT- V

NETWORK THEOREMS



Introduction

This chapter introduces important  
fundamental theorems of network analysis.  
They are the
S u p e r p o s i t i o n theorem
Thévenin’s theorem

N o r t o n ’s theorem
M a x i m u m power transfer theorem
S u b s t i t u t i o n Theorem
Mi l lman ’s theorem
R e c i p r o c i t y theorem



Superposition Theorem

Used to find the solution to networks with two or
more sources that are not in series or parallel. The
current through, or voltage across, an element in a
network is equal to the algebraic sum of the
currents or voltages produced independently by
each source. Since the effect of each source will
be determined independently, the number of
networks to be analyzed will equal the number of
sources.



Superposition Theorem

 T h e  total power delivered to a resistive  
must be determined using the total current  
through or the total voltage across the element  
and cannot be determined by a simple sum of  
the power levels established by each source.



Thévenin’s Theorem



Thévenin’s Theorem

R e d u c e the number of components required  to 
establish the same characteristics at the  output
terminals.I n v e s t i g a t e  the effect ofchanging a 
particular  component on the behavior of a network 
without  having to analyze the entire network after each  
change.



Thévenin’s Theorem
 Procedure to determine the proper values of 
RTh andETh

 Preliminary
1. Remove that portion of the network across which the Thévenin  

equation circuit is to be found. In the figure below, this requires  
that the load resistor RL be temporarily removed from the  
network.



Thévenin’s Theorem

2. Mark the terminals of the remaining two-terminal  
network. (The importance of this step will become  
obvious as we progress through some complex  
networks.)

RTh:
3. Calculate RTh by first setting all sources to zero (voltage  

sources are replaced by short circuits, and current  
sources by open circuits) and then finding the resultant  
resistance between the two marked terminals. (If the  
internal resistance of the voltage and/or currentsources  
is included in the original network, it must remain when  
the sources are set to zero.)



Thévenin’s Theorem

ETh:
4. Calculate ETh by first returning all sources to their original  

position and finding the open-circuit voltage between  
the marked terminals. (This step is invariably the one  
that will lead to the most confusion and errors. In all  
cases, keep in mind that it is the open-circuit potential  
between the two terminals marked in step 2.)



Thévenin’s Theorem

 Conclusion:

5. Draw the Thévenin  
equivalent circuit with  
the portion of the circuit  
previously removed  
replaced between the  
terminals of the  
equivalent circuit. This  
step is indicated by the  
placement of the  
resistor RL between the  
terminals of the  
Thévenin equivalent  
circuit.

Insert Figure 9.26(b)



Thévenin’s Theorem

Experimental Procedures

 Two popular experimental 
procedures  fordetermining the parameters of 
the  Thévenin equivalent network:

Direct Measurement of ETh and RTh

For any physical network, the value of ETh can be 
determined experimentally by measuring the open-
circuit voltage across the load terminals.

The value of RTh can then be determined by completing  the 
network with a variable resistance RL.



Thévenin’s Theorem

Measuring VOC and ISC The Thévenin voltage is again 
determined by  measuring the open-circuit voltage across 
the  terminals of interest; that is, 

ETh = VOC. To determine  RTh, a short-circuit condition is 
established across the  terminals of interest and the 
current through the  short circuit (Isc) is measured with an
ammeter.

U s i n g Ohm’s law:

RTh  = Voc  /Isc



Norton’s Theorem

Norton’s theorem states the following:
Any two-terminal linear bilateral dc network can  be 
replaced by an equivalent circuit consisting of a  
current and a parallel resistor.

The steps leading to the proper values of IN and
RN.

Preliminary steps:
1. Remove that portion of the network across which  

the Norton equivalent circuit is found.

2. Mark the terminals of the remaining two-terminal  
network.



Norton’s Theorem

 Finding RN:
3. Calculate RN by first setting all sources to zero  

(voltage sources are replaced with short circuits,  
and current sources with open circuits) and then  
finding the resultant resistance between the two  
marked terminals. (If the internal resistance of the  
voltage and/or current sources is included in the  
original network, it must remain when the sources  
are set to zero.) Since RN = RTh the procedure and  
value obtained using the approach described for  
Thévenin’s theorem willdetermine the proper value  
of RN.



Norton’s TheoremFinding IN :

4. Calculate IN by first returning all the sources to  
their original position and then finding the short-
circuit current between the marked terminals. It  
is the same current that would be measured by an  
ammeter placed between the marked terminals.

Conclusion:

5. Draw the Norton equivalent circuit with the  
portion of the circuit previously removed replaced  
between the terminals of the equivalent circuit.



Maximum Power Transfer Theorem

A load will receive maximum power from a  
network when its total resistive value is  
exactly equal to the Thévenin resistance of  
the network applied to the load. That is,

RL  = RTh



Maximum Power Transfer Theorem

For loads connected directly to a dc  
voltage supply, maximum power will be  
delivered to the load when the load  
resistance is equal to the internal  
resistance of the source; that is, when:

RL  = Rint



Millman’s Theorem

Any number of parallel voltage sources can be
reduced to one.

This permits finding the current through or across RL

without having to apply a method such as mesh
analysis, nodal analysis, superposition and so on.

1. Convert all voltage sources to current sources.

2. Combine parallel current sources.

3. Convert the resulting current source to a voltage source  
and the desired single-source network is obtained.



Substitution Theorem

The substitution theorem states: If the voltage 
across and the current through  any branch of a dc 
bilateral network is known,  this branch can be 
replaced by any combination  of elements that will 
maintain the same voltage  across and current through 
the chosen branch. Simply, for a branch equivalence, 
the voltage and current must be the same.



Reciprocity Theorem

The reciprocity theorem is applicable only  tosingle-
source networks and states the  following:

The current I in any branch of a network, due to  asingle 
voltage source E anywhere in the network,  will equal 
the current through the branch in which  the source 
was originally located if the source is  placed in the 
branch in which the current I was  originally 
measured.

 The location of the voltage source and the resulting 
may be interchanged without a change in current




