JYOTHIISHMATIHII INSTITUTE OF TECRINOLOGY \& SCIENCE

SUB: DIGITAL SIGNAL PROCESSING

TOPIC:Introduction to Fast Fourier Transform (FFT) Algorithms

Dr.ASR REDDY
ASSOC PROFESSOR
ECE
JITS KARIMNAGAR

Discrete Fourier Transform (DFT)

- The DFT provides uniformly spaced samples of the Discrete-Time Fourier Transform (DTFT)
- DFT definition:

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 m k k}{N}} \quad x[n]=\frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{\frac{j m m k}{N}}
$$

- Requires N^{2} complex multiplies and $\mathrm{N}(\mathrm{N}-1)$ complex additions

Faster DFT computation?

- Take advantage of the symmetry and periodicity of the complex exponential (let $\mathrm{W}_{\mathrm{N}}=\mathrm{e}^{-\mathrm{j} 2 \pi / \mathrm{N}}$)
- symmetry: $W_{N}^{k[N-n]}=W_{N}^{-k n}=\left(W_{N}^{k n}\right)^{*}$
- periodicity: $W_{N}^{k n}=W_{N}^{k[n+N]}=W_{N}^{[k+N] n}$
- Note that two length N/2 DFTs take less computation than one length N DFT: $2(\mathrm{~N} / 2)^{2}<\mathrm{N}^{2}$
- Algorithms that exploit computational savings are collectively called Fast Fourier Transforms

Decimation-in-Time Algorithm

- Consider expressing DFT with even and odd input samples:

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{N-1} x[n] W_{N}^{n k} \\
& =\sum_{n \text { even }}^{n} x[n] W_{N}^{n k}+\sum_{\text {nodd }} x[n] W_{N}^{n k} \\
& =\sum_{r=0}^{\frac{N}{2}-1} x[2 r]\left(W_{N}^{2}\right)^{r k}+W_{N}^{k} \sum_{r=0}^{\frac{N}{2}-1} x[2 r+1]\left(W_{N}^{2}\right)^{r k} \\
& =\sum_{r=0}^{\frac{N}{2}-1} x[2 r] W_{N / 2}^{r k}+W_{N}^{k} \sum_{r=0}^{\frac{N}{2}-1} x[2 r+1] W_{N / 2}^{r k}
\end{aligned}
$$

DIT Algorithm (cont.)

- Result is the sum of two $\mathrm{N} / 2$ length DFTs

$$
X[k]=\underbrace{G[k]}_{\begin{array}{c}
\mathrm{N} / 2 \mathrm{DF} \\
\text { of even sanples }
\end{array}}+W_{N}^{k} \cdot \underbrace{H[k]}_{\begin{array}{c}
\text { of odd DFT } \\
\text { of onples }
\end{array}}
$$

- Then repeat decomposition of $\mathrm{N} / 2$ to $\mathrm{N} / 4 \mathrm{DFTs}$, etc.

Detail of "Butterfly"

- Cross feed of $\mathrm{G}[\mathrm{k}]$ and $\mathrm{H}[\mathrm{k}]$ in flow diagram is called a "butterfly", due to shape

$$
\left(=-W_{N}^{r}\right)
$$

or simplify:

8-point DFT Diagram

Computation on DSP

- Input and Output data
- Real data in X memory
- Imaginary data in Y memory
- Coefficients ("twiddle" factors)
- cos (real) values in X memory
- sin (imag) values in Y memory
- Inverse computed with exponent sign change and $1 / \mathrm{N}$ scaling

