JYOTHISHMATHI INSTITUTE OF TECHNOLOGY \& SCINCE

PPT ON COMBINATIONAL CIRCUIT FOR CODE CONVERTERS

PRESENTED BY
S.MANOJ
Asst.Prof, ECE Dept.

Functional Blocks

- Fundamental circuits that are the base building blocks of most larger digital circuits
- They are reusable and are common to many systems.
- Examples of functional logic circuits
- Decoders
- Encoders
- Code converters
- Multiplexers

Where they are used

- Multiplexers
- Selectors for routing data to the processor, memory, I/O
- Multiplexers route the data to the correct bus or port.
- Decoders
- are used for selecting things like a bank of memory and then the address within the bank. This is also the function needed to 'decode' the instruction to determine the operation to perform.
- Encoders
- are used in various components such as keyboards.

Formulation step

- Convert the specifications into a variety forms for optimal implementation.
- Possible forms
- Truth Tables
- Expressions
- K-maps
- Binary Decision Diagrams

Last 3 steps

- Best illustrated by example
- A BCD to Excess-3 code converter

BCD-to-Excess-3 Code converter

- BCD is a code for the decimal digits 0-9
- Excess-3 is also a code for the decimal digits

| Decimal
 Digit | | Input
 BCD | | | Output
 Excess-3 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| 2 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 3 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 4 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 5 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 6 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 7 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
| 8 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 9 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |

Specification of BCD-to-Excess3

- Inputs: a BCD input, A,B,C,D with A as the most significant bit and D as the least significant bit.
- Outputs: an Excess-3 output W,X,Y,Z that corresponds to the BCD input.
- Internal operation - circuit to do the conversion in combinational logic.

Formulation of BCD-to-Excess-3

- Excess-3 code is easily formed by adding a binary 3 to the binary or BCD for the digit.
- There are 16 possible inputs for both BCD and Excess-3.
- It can be assumed that only valid BCD inputs will appear so the six combinations not used can be treated as don't cares.

Expressions for $W X Y Z$

- $W(A, B, C, D)=\Sigma m(5,6,7,8,9)$ $+\mathrm{d}(\mathrm{IO}, \mathrm{II}, \mathrm{I} 2, \mathrm{I} 3,14, \mathrm{I} 5)$
- $X(A, B, C, D)=\Sigma m(1,2,3,4,9)$ $+d(10, I I, 12,13,14,15)$
- $Y(A, B, C, D)=\Sigma m(0,3,4,7,8)$ $+d(10, I I, I 2,13,14,15)$
- $Z(A, B, C, D)=\Sigma m(0,2,4,6,8)$ $+d(10, I I, I 2,13,14,15)$

Two level circuit implementation

- Have equations
- $\mathrm{W}=\mathrm{A}+\mathrm{BC}+\mathrm{BD}=\mathrm{A}+\mathrm{B}(\mathrm{C}+\mathrm{D})$
${ }^{\circ} X=B^{\prime} C+B^{\prime} D+B C^{\prime} D^{\prime}=B^{\prime}(C+D)+B C^{\prime} D^{\prime}$
- $Y=C D+C^{\prime} D^{\prime}$
- $\mathrm{Z}=\mathrm{D}$ '
- Factoring out (C+D) and call it T
- Then T' = (C+D)' = C'D'
- $\mathrm{W}=\mathrm{A}+\mathrm{BT}$
- $\mathrm{X}=\mathrm{B}^{\prime} \mathrm{T}+\mathrm{BT} \mathrm{P}^{\prime}$
- $Y=C D+T^{\prime}$
- $Z=D^{\prime}$

Create the digital circuit

- Implementing the second set of equations where $T=C+D$ results in a lower gate count.
- This gate has a fanout of 3

