JYOTHISHMATHI INSTITUTE OF THECHNOLOGY AND SCIENCE NUSTHULPUR ,KARIMNAGAR

A.RAMYA
ASST. PROFESSOR
CSE

Turing Machines are...

- Very powerful (abstract) machines that could simulate any modern day computer (although very, very slowly!)
. $\quad\left[\begin{array}{c}\begin{array}{c}\text { For even innut, } \\ \text { answer YES or No }\end{array} \\ \hline\end{array}\right.$
- Why design such a machine?
- If a problem cannot be "solved" even using a TM, then it implies that the problem is undecidable
- Computability vs. Decidability

A Turing Machine (TM)

- $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$

Infinite tape with tape symbols
This is like
the CPU \&
program
counter Tape is the
memory

B: blank symbol (special symbol reserved to indicate data boundary)

Transition function

\leftarrow for L

- One move (denoted by |---) in a TM does the following:
- $\delta(q, X)=(p, Y, D)$

- q is the current state
- X is the current tape symbol pointed by tape head
- State changes from q to p
- After the move:
- X is replaced with symbol Y
- If $D=$ "L", the tape head moves "left" by one position.
Alternatively, if $D=$ " R " the tape head moves "right" by one position.

ID of a TM

- Instantaneous Description or ID:
- $X_{1} X_{2} \ldots X_{i-1} q X_{i} X_{i+1} \ldots X_{n}$ means:
- q is the current state
- Tape head is pointing to X_{i}
- $X_{1} X_{2} \ldots X_{i-1} X_{i} X_{i+1} \ldots X_{n}$ are the current tape symbols
- $\delta\left(q, X_{i}\right)=(p, Y, R)$ is same as:
$X_{1} \ldots X_{i-1} q X_{i} \ldots X_{n} \mid-\ldots X_{1} \ldots X_{i-1} Y_{p} X_{i+1} \ldots X_{n}$
- $\delta\left(q, X_{i}\right)=(p, Y, L)$ is same as:
$X_{1} \ldots X_{i-1} q X_{i} \ldots X_{n} \mid-\ldots X_{1} \ldots p X_{i-1} Y X_{i+1} \ldots X_{n}$

Way to check for Membership

- Is a string waccepted by a TM?
- Initial condition:
- The (whole) input string w is present in TM, preceded and followed by infinite blank symbols
- Final acceptance:
- Accept w if TM enters final state and halts
- If TM halts and not final state, then reject

Example: $L=\left\{0^{n 1 n} \mid n \geq 1\right\}$

- Strategy:
$w=000111$

TM for $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$

1. Mark next unread 0 with X and move right
2. Move to the right all the way to the first unread 1 , and mark it with Y
3. Move back (to the left) all the way to the last marked X , and then move one position to the right
4. If the next position is 0 , then goto step 1 .
Else move all the way to the right to ensure there are no excess 1s. If not move right to the next blank symbol and stop \& accept.
*state diagram representation preferred

TM for $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$

	Next Tape Symbol					
Curr. State	0	1	X	Y	B	
$\rightarrow \mathrm{q}_{0}$	$\left(\mathrm{q}_{1}, \mathrm{X}, \mathrm{R}\right)$	-	-	$\left(\mathrm{q}_{3}, \mathrm{Y}, \mathrm{R}\right)$	-	
q_{1}	$\left(\mathrm{q}_{1}, 0, \mathrm{R}\right)$	$\left(\mathrm{q}_{2}, \mathrm{Y}, \mathrm{L}\right)$	-	$\left(\mathrm{q}_{1}, \mathrm{Y}, \mathrm{R}\right)$	-	
q_{2}	$\left(\mathrm{q}_{2}, 0, \mathrm{~L}\right)$	-	$\left(\mathrm{q}_{0}, \mathrm{X}, \mathrm{R}\right)$	$\left(\mathrm{q}_{2}, \mathrm{Y}, \mathrm{L}\right)$	-	
q_{3}	-	-	-	$\left(\mathrm{q}_{3}, \mathrm{Y}, \mathrm{R}\right)$	$\left(\mathrm{q}_{4}, \mathrm{~B}, \mathrm{R}\right)$	
${ }^{*} \mathrm{q}_{4}$	-	--	-	-	-	

Table representation of the state diagram

TMs for calculations

- TMs can also be used for calculating values
- Like arithmetic computations
- Eg., addition, subtraction, multiplication, etc.

