Gisd

B.BABU

Assistant Professor
Department of
Jyothishmathi Institute of Technology & Science




Potential Difference=Voltage=EMF

In a battery, a series ofchemical
reactions occum whichelectrons
aretransferredfrom oneterminalto
another.Thereis a potential
difference(voltage)between these

§ poles.

B Themaximum potential differencea
Voltage =Potential Difference =Emr .,y er sourcecanhaveis called the
V=AV=¢ electromotive force or (EMF)g. The
term isn't actuallya force,simply
the amountof energy percharge
(J/Cor V)



All electriccircuitshavethree mainparts

1. Asourceof energy
2. Aclosedpath
3. Adevice whicluses theenergy

If ANYpart ofthe circuitis openthe device willnot work!

2. Closed path (wire)

3. Device
(lightbulb)




Electricitycanbe symbolic

Circuits are very similar to water flowing through a pipe

A pump basically works on TWO
IMPORTANT PRINCIPLES concerningits
flow

A There is a PRESSURE DIFFERENCE
where the flow begins and ends

A A certain AMOUNT of flow passes each
SECOND.

A circuit basically works on TWO
IMPORTANT PRINCIPLES

A There is a "POTENTIAL DIFFERENCE
aka VOLTAGE" from where the charge
begins to where it ends

A The AMOUNT of CHARGE that flows

PER SECOND is called CURRENT,



Current

Currentis definedas therate at whichcharge
flows througha surface.

[necurrentisin the same directioras theriow

of positivecharge(for this course)

Note: Thefi Istands >
for intensity . R




DC = Direct Current - current flows in one direction
Example: Battery

Direct Current:

Current
ohe way flow

B

Time

AC = Alternating Current- current reverses direction many times per second.
This suggests that AC devices turn OFFand
ON. Example: Wall outlet (progress energy)

I S

)\J u
Alternating Current: x Alternating Current:

¥ Current
First this way Then this way /‘\ m
Time

&
e
< {]
= i
oo




NThe

DVa |
R = constant

R = Resistance

Since R=DV/I, the resistance is the

SLOPE of a DV vs. | graph

of proportion ality

O h mbas

Vv (potemtial difierence, emf) is directly relatedto
the current, when the resistanceisc onst ant c

=
o

Voltage vs. Current
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Electrical resistance

resistance of light bulb
filament is high so a
lot of heat and light
are produced as the
4 electricity forces its
way through

resistance
circuit wire is
quite low

the light bulb
is a resistor

The unit for resistanceis
the OHM, W



ElectricaPOWER

Wehavealreadylearnedthat POWER is theate at which work(energy)
IS done.Circuits thatare a prime exampleof this asbatteriesonlylast
for a certainamountof time AND weget chargedan energy billeach

month basedn the amountof energywe usedover thecourseof a
mo nt h eROWER.

High voltage
Power transmission lines  Transmission substation

substation




POWER

It isinterestingto see how certain electrical
variables can be used to get POWVER.L e takes
Voltageand Currentfor example.




Otherusefulpowerformulas

Thesdormulas caralso
be usedTheyare
simplyderivations of
the POWERbrmula
with different versions
of Ohm'slaw
substitutedin.




Waysto Wire Circults

There are2 basicwaysto wire a circuit. Keepin mindthat
aresistorcould be ANYTHINGulb,toaster,ceramic

materi al éet c)

Series T One after another
Parallel i between a set of junctions and

parallel to each other

s |

<: " \‘: m '. ’ (\ H.




SchematicSymbols

schematic symbol. Specify voltage amplitude.
An arrow thru the symbol denotes a variable

DC voltage source or battery
T voltage source (you must set the value manually)

‘ Resistance must be specified.
Resistor An arrow thru the symbol denotes a variable
resistor (you set the value manually)

Ammeter
Voltmeter /A\
S

— +—  Switch
= r— Battery

—@— Light Bulb

For the battery symbol, the
LONG line is considered to be
the POSITIVE terminal and the
SHORT line , NEGATIVE.

The VOLTMETER and AMMETER
are special devices you place IN
or AROUND the circuit to
measure the VOLTAGE and
CURRENT.



TheVoltmeter& Ammeter

@ v Ammeter  The voltmeter and ammeter cannot be
oltmeter n ] _ _ _

L% just placed anywhere in the circuit. They
Current goes THROUGH the ammeter ~ Must be used according to their

DEFINITION.
Since a voltmeter measures voltage or

\mmeter POTENTIAL DIFFERENCE it must be
4®7 placed ACROSS the device you want
to measure. That way you can measure

battery the CHANGE on either side of the
or _L_ R “ Cv)\ device.
cell Voltmeter is drawn ACROSS the resistor
; voltmeter
rheostat Since the ammeter

measures the current or

FLOW it must be placedin
such a way as the charges
go THROUGH the device.



SimpleCircult
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Whenyouaredrawinga
circuitit maybe awise
thlng to start by drawing
the battery first, then

follow alongthe loop

(closed)startingwith

positiveanddrawingwhat

yousee.



SerieLircult

In in series circuit, theesistors
are wired one after another.
Sincethey are all part of the
SAMHB_.OORhey each
experiencethe SAME

(series )Total 1 2 3
V(series ) Total = V1 * Vz * V3
AMOUNTof current. In figure,
however,you seethat they all
existBETWEEme terminals
of the battery, meaningthey

SHARHEhe potential (voltage).



SerieLircuit

(series) Total 1 2 3 | ! R e
=V +V +Vv [’
v (series)Total 1 2 3 o Rz Ra
Sl B | e

As the current goes through the circuit, the charges must USE ENERGY to get

through the resistor. So each individual resistor will get its own individual potential
voltage). We call this VOLTAGE DROP.

V =V +V +V ; DV =1R
( series ) Total 1 2 3
(I _.R.) -1 R *tTI R +I1IR Note: They may use the
T T 7 series 11 2 2 3 3 terms ' ef f ewt i ved
— equi viameant ¢
wies = M1 F Ry R, TOTAL!

R
Rs:é.Ri



Example

A seriegircuitis shownto the left.

. a) Whatis thetotal resistance?
Ll R(series) =1+ 2+ 3 =6W
Q3 b) Whatis thetotal current?
£ 20 DV=IR  12=I(6) |=2A
" c) Whatis thecurrent acrossACH
30 resistor?

They EACH get 2 amps!

d) Whatis thevoltagedrop across
eachresistor?(Apply Ohm's lavio
eachresistorseparately)

Ve (2)AV1) y7(2)R)=6V  Vyu=(2)(2)=4V

Notice that the individual VOLTAGE DROPS add up to the TOTAL!!



ParallelCircuit

In aparallelcircuit, we have
multiple loops. So the
currentsplits upamongthe
loops with the individual
loop currentsaddingto the
total current

resistor

\

Junctions

It is important to understand that parallel
circuits will all have some position
where the current splits and comes back
together. We call these JUNCTIONS.

| =1+1+]1
1 2

Regarding Junctions :

IIN:IOUT
The current going IN to a junction will
always equal the current going OUT of a

junction.



ParallelCircuit

resistor

This junction
touches the
POSITIVE
terminal

This junction
touches the
NEGATIVE
terminal

Notice that the JUNCTIONS both touch the
POSTIVE and NEGATIVE terminals of the
battery. That means you have the SAME
potential difference down EACH individual
branch of the parallel circuit. This means
that the individual voltages drops are equal.

V(paralel ) Total :V:l:V:y
[ =l+1+1;DV=IR
(parallel )Total 1 2 3
\V; \% \% \%
(T_)_ Parallel =—4t+-2t+ 2
Rl RZ R3
1 1 1
= —+ —+ —
Rl RZ R3

R:
1
Re
1
Re

Q:

1

Ri



DV

SW

IR

— =16A

W

Example

Tothe left is an example of a parallel circuit.

a) What is the total resistance?

1 1 1 1
= 4+ —+ —

1 1
045 - R, = _  220W
R 0.454

DV =IR

b) What is the total current?
) 8=1(R)= 3.64A

8 V each!
c) What is the voltage across EACH resistor?

d) What is the current drop across eachresistor?
(Apply Ohm's law to each resistor separately)

Notice that the
individual currents

8
- _=0.90A
J ADD to the total.

AN

8
- _=1.14A
7



Compound ComplexCircuits

Many times you will have series and parallel in the SAME circuit.

8002
——+
T - 1000 S00Q

e

Solve this type of circuit
from the inside out.

WHAT IS THE TOTAL
RESISTANCE?

1 11
= +—; R, =33.3W

R, 100 50

R.=80+33.3=113.3W




Compound ComplexCircults

—{ \W 1 1 1
800 = +—; R, =33.3W
10002 30€2
R.=80+33.3=113.3W

Suppose the potential difference (voltage) is equal to 120V. What is thetotal

current?
DV. = IR

T T

120 = 1_(113.3)

;= 1.06A

DV =1 R
sow

sowsow

V., =(1.06)(80)

What is the VOLTAGE DROP across the 80W resistor?v.,.-
84.8V



Compound Complex) Circuits

R. =113.3W

T

V. =120V

T

= 8002
|, =1.06 A T 1000 500
V = 84.8V

80W

I =1.06 A

80W

What is the VOLTAGE DROP across
the 100Wand 50Wresistor?

v :V2:V3

T ( parallel )

Vv =V +V

T (series ) 1 2&3

120 =84.8+V .
V,.s = 35.2V Each!

What is the current acrossthe
100Wand 50Wresistor?

IT(paraIIeI ) = I2 + |3

I T ( series)

- —12&3
35 2 ‘
| =
100 W
N\ Add to
35 2 1.06A
5



UNITII

CIRCUIANALYSIS



Star-Delta Transformation

A
Rz R3
Ry
C
B O— .

(a) Star (Y) section | (b) Delta or mesh (A) section

- F RN W AR




Equivalence

A Equivalencecanbe found on the basisthat the resistance
between any pair of terminalsin the two circuitshaveto be
the same,whenthe third terminal is left open.



A O

O o
8 O
(6) Delta or mesh {(A) section
A Firsttake delta connection:betweenA andC,
there aretwo parallelpaths, one having
resistanceof R, andother havingaresistance
of (Ri+R)

Henceresistancebetweenterminal A and ds

=Re.(R+R)/[R+(R+R)]




A Nowtakethe star connection

A O

The resistance between the same terminalA and C is (Rp*+R()
Since terminal resistance have to be same so we musthave
(RatRc) = R2.(R1+R3)/[Ry+( R1+R3)] (1)

Similarly for terminals A and B, B and C, we can have the following
expression

(RatRg) = R3.(R1+Ry)/[R3+(R1+Ry)]  (2)
(Re+Rc) = R1.(Ry+R3)/[R1+( R+R3)] (3)



DELTA to STAR

Now subtracting 2 from 1 and adding the result to 3, we will get the following values
for R;,R,and Rs.

.. B = g R;eRLR
" Ri+Ry Ry e

- R.R,
R,+R;+ R,

Ry

Rc

How to remember?

Resistance of each arm of star is given by the product of the
resistance of the two delta sides that meet at its ends divided by
the sum of the three delta resistance



STAR to DELTA

Multiplying 1 and 2, 2 and 3, 3 and 1 and adding them together and
simplifying, we will have the following result.

R — R,Rp+ RzR-.+ R-R,
1 RA
R _ RARB+RBRC+RCRA
9 =
Ry
R — RARB T RBRC +- RCRA
3 RC

How to remember: The equivalent delta resistance between any two point is
given by the product of resistance taken two at a time divided by the opposite
resistance in the star configuration.



Problem

A A delta-section ofresistorsis givenin figure.
Convertthis into an equivalent star-section.

”m=3Q Rc Reg

Co

Rzzgﬂ lR3=6.ﬁ.

A (@) (b)

Ans .: R, =3 W; R,=10W, R, =15W.




Problem

The figure shows a
network. Thenumber
on eachbranch
representsthe valueof
resistancein ohms.
Find theresistance
betweenthe pointsE
andF.




Solution




AnS. :




Problem
IFind the currentdrawn from the 5volt battery inthe

network shownin figure.




Solution:













5V 30

32/15 0

Ans. : 0.974 A



MeshAnalysis

A MeshanalysisappliesKVLto find unknowncurrents

A It is only applicableto planar circuits(a circuit that
canbe drawnon a planewith no branchescrossing
eachother).

A A mesh is a loofhat does notcontainanyother
loops.

A Thecurrentthroughamesh is known athe mesh
current.

A Assumefor simplicitythat the circuit containsonly
voltagesources.



1.

2.

Mesh AnalysiSteps

Assigmmeshcurrentsiy, I, I3, € 1}, to the |
meshes,

ApplyKVLio eachof the | meshesanduse

O h m@w to express the voltages in terms
of the meshcurrents,

Solvethe | resultingsimultaneousequations
to find the meshcurrents



- +
R Vs oo, DCCDV%@ Ve Ra
N

— V8+/
S —
S

Number of nodes, n= [ Number of loops, | = 4

Number of branches, b= 10 l=b-n+1

44



Example ¥ \
—— ATV
+ V; - + V) -
+ . + .
DC< V52 |1 V7 R7 |2
Vs - + Vg -
AN A
Rs Re
- +
R3 V3 @ Dc<+ Vsl@ \{4
Apply KVL to eachmesh * -V, 4+
Mesh 1: -V +v +v -v =0 Re
S, 7 5
Mesh 2: v, - - v, =0
Mesh 3: V. +v, +v, =0
Mesh 4. vV, +V

4

sl+v6:0




MeSh 1: - V +V +V._ -V = O Q\W%
S; 1 7 5 + V1 - + Vo -
Mesh 2: _ _ _ oc( i |
v,-vVv,-Vv, =0 C 9\/ R 2
+ Ve - + \. -
Mesh 3: v +v +v. =0 ° 6
s T Vs, T Vs — AN AV
Rs

Mesh 4: v +v -V +v =0
4

Rs
8 S, 6 R3 ) ol Tt -
SRS
Express the voltage in terms of the mesh +

currents:
Mesh 1: -VSz +|1R1+(|1- |2)R7+(i1- i,)R, =0
Mesh 2: ' |- i i -
©s I2R2+(|2 I4)R6+(|2- I1)R7 =0

Mesh 3: (i -i)R +V +i R =
3 1’ s s, 3 3

Mesh4:  i,R, +i,R,-V_ + (i,-i,)R, =0




Meshl: -V +iR +(i -1 )R +(i -1 )R =0
S 1 1 1 2 7 1 3 5

Mesh 2: iR, +(i, " i4)R6+(i2_ )R, =0

Mesh 3: (i —il)R +V +1 R =0
3 5 S 3 3

1

Mesh 4: i,R,+i,R, - Vs1 + (i4 - i2)R6 =0
Mesh 1: (R1+ R5 * R7)i1- R7i2 ) R5i3 :Vs
Mesh 2: -R,i +(R,+R_ ¥ R7)i2 - RGi4 =0
Mesh 3: - R5|l + (R3 + R5)|3 = 'Vsl

Mesh 4: 'R6|2+(R4+R6+R8)|4:V51



Mesh 1:
Mesh 2:
Mesh 3:
Mesh 4:

arR + R5 + R7

€ _R

e 7

e - R5

* 0

C

(Rl + RS * IQ7)I1 ]

RI - Ri =V

72 53 S,
'R7E+(R2+R6+R7)I2- R6I4 =0
-RiI +(R +R)I =-V

51 3 573 5

-Ri +(R +R +R)i =V
6 2 4 6 8 4

S
0 6éi16
- R o0& O
6 oéz 0:

0 Oag O
3--

Oze O

100 O O O Ot



arR, + R, + R, - R, - R, 0 oai,
e i oae
- R R,+R.+R, 0 R 4oz
e - R R +R 0 o
5 3 5 . 3
e Oee
c 0 - R 0 R,2*Re+Rysci,

R is an | x | symmetric resistance matrix

| isalxlvector of mesh currents

\V/ is a vector of voltages representing ' k n o waltéges

O: O O O O

ogy B3

Qo
<

(7]

<

< O
1 O:0: O O O O

N

N

0



Writing the Mesh Equationsby Inspection

ARFR+R R, - R, 0 6ai,5 2avs,
® i b 0 = Y
- R, R,+R+R, 0 R, badeg_ @ 0 4
: R, 0 R+ R 0 oaagg 2 Vet
c 0 R, 0 R, + R, + Rs+g4'+ Vsl 0

AThe matrix R is symmetric, r,;= ry and all of the off-diagonal terms are negative or
zero.

The r terms are the sum of all resistances in meshKk.

The rterms are the negative sum of the resistances common to BOTH meshk
and meshj.

The v, (the kthcomponent of the vector v) = the algebraic sum of the independent
voltages in mesh k, with voltage rises taken as positive.



OB BB B

MATLAB Solution of Mesh Equations

&R + R, +R, - R, - R, 0 5ai, 5 aVs,
b 6 *
R2+R6+R7 O - R6 O£ZO:& O
0 R, + R, 0 e, 8 HV_
= bee 0 &
- i 0 R, +Rg +Ryxgly = BV,
RI =V
-1

100 O O O Ot

51



R
Test with numbers R 2
AT\,
CAV AW R
1w 2W
AN AN
R R
Re— 3w s DCQZV@4w§R4
1w
Ry
a2+4+1 -4 1 0 6ai,d 44 o6
€ 4 3+2+4 0 _p 2/ 9 &®,0
®e 0xe20_a O
ae 1 0 3+1 0 066'30 & 20
e O 0 & O
c 0 2 0 2+4+1_9|4+ c 2 -



Test with numbers

82+4+1
: -4

& -1

x

c 0

-4 -1 O 05ai,6 4450
dae O

3+2+4 0 L2 9H Y Eg 0

0e20_ae O

0 3+1 0 0x_0 @& 20

Oe 0 & O

-2 0 2+4+1—g'4+ 92—
a7 -4 -1 063,06 a446
2,4 9 0 -29% 0 aeot')
e 0e20_-ae O
&1 O 4 0 68 0 @& 20
S 5 e 0 & O
QO - o) 7+9|4; 92+



Common symbols for indicating a reference node,
(a) common ground, (b) ground, (c) chassis.

— /
(a) (b)

f

54



1. ReferenceNode

hereferencenodeis calledthe ground node
whereV=0



2. NodeVoltages

V1, V,, andViare unknownsfor whichwe solve
usingKCL



Stepsof NodalAnalysis

3. ApplyKClio each nodeother than thereference
node;expresscurrentsin terms of nodevoltages.



Currentsand NodeVoltages




3. KClat Nodel

500W v

A
Il( %SOOW _Vin Vo + Vi
l
500 W 500 W




3. KClat Node?2

500W y, 500W

1kW

V, -V V V

2 L Vo2
= 500 W 1kwW 500 W

) -V

1 3

=0




3. KClat Node3

v, 500W v,

500W (A> l, V- V, + Vs = |
500W 500W -




Stepsof NodalAnalysis

4. Solvethe resultingsystemof linearequationgor
the nodalvoltages.



4. SummingCircuitSolution

S00W S00W

== (D

Solution: V=1671,+161,




Typical circuit for nodal analysis

!
2 12
v o—
: 4 2 2 R 2
v v
ANVVN— [ . )
+ + +ll +l3

64



1
|, +1, =1,
B Vige ™ Viowe
R
-0
or :le1
Rl
- V2 _
or i,=G,(v,-V,)
RZ
-0
or =G v
3 3 2

65



v — 1 1 2
Y | =1+ +
Rl R2
| +V1_V2:V_2
2
RZ RS
Y I -1 =Gv +G (v -Vv)
1 2 11 2 1 2
1, =-G,(v,-Vv,)+G,v,
Gi*G, "%, sevig_ el
- +G uUev U e
Gz GZ 3ue 2Uu e




A Calculus themodevoltagein the circuit shown

In Fig.3 3(a) .

4 Q

4@_

67



A Atnodel

PSUT

5A
@
yir= - bii=
V) ——WWW
—
T
2Q§ 6Q§ ) 10a

(b)

68



A Atnode?2

5A
L)
*ll=5@ ?llz
V) ———WWW
o
¢i3 5 i5¢
20 6Q§ () 10A

(b)

69



A In matrix form:

el 1 1l g

,— + — - — .. .
274 4 vens_eso
€ 1 1 1Yg, u eu
e - — + ue 2 U e u
e 4 6 4u



Practice




IDeterminethe voltage atthe nodes inFig.below

4 Q 4 Q
ANV AV
i Tll I iy ‘ll
. 28 ) 8 Q 2Q U5 e 88 o
] ———AWW N ] vl AAAA AAAAY U3
— —
3ad] i |4

12



A Atnode1l,

40
AW

i 2 a2 850 B t

VI —WVWW ' NW\ 23
— — _
sat| i |4

3a () 40 ?2&
(b)

73



A Atnode?2

io=i,+i,
v VooV, \é 5g V
2 8

74



A Atnode3

PSUT

75



A In matrix form:

e 3 1 lo

24 2 4Ysv. g &3g
1 7 1% o e 0

e- — — - —u,wv =0
2 8 gy€ Y € u



3.3 NodalAnalysis with/oltage
Sources

_|Casel: Thevoltagesourceis connected
betweena nonreferencenodeand the
referencenode Thenonreferencenode
voltageis equalo the magnitude olvoltage
sourceand thenumberof unknown
nonreferencenodesis reducedby one.

1Case2: Thevoltagesourceis connected
between twononreferencedhodes a
generalizechode Gupernode is formed.



9.0 NOUalATlalysSIaNitrn vOoltage

Sources
A circuit with a supernode.
4 Q
MVYWV 7 Supernode
....... /|4
70 A 5V e »
0 —aww— 2 6 v;

PSUT



1A supernodes formedby enclosinga
(dependentor independent)voltagesource
connected between twmonreferencenodes
andanyelementsconnectedn parallelwith it.

_ITherequiredtwo equationsfor regulatingtne
two nonreferencenodevoltagesare obtained
by the KClof the supernodeandthe

relationshipof nodevoltagesdue tothe
voltagesource.



Example3.3

A Forthe circuit shownin Fig.3.9,find the

nodevoltages.

10
——AMM——

2-7-i1-i2=0

2V
i 2 Y
+

N7 T

2 A ill %29 49%9 7A




Find the node voltages in the circuit below.

-—
"

———
-

30
AN
,,,,,, - +vx_
L™
a1 oo
</

-

-
-—
T —— - -

81



A At suopernodel-2,

82



A At supernode3-4,

83



3.4MeshAnalysis

A Meshanalysis: anotheprocedurefor
analyzingeircuits,applicableto planarcirculit.

A A Mesh is a loop whiathoes notcontain any
other loopswithin it



(a) A Planar circuit with crossing branches,

(b) The same circuit redrawn with no crossing branches.

1 A

)
@

2Q
MWW

4 Q

8 Q 7 Q

(a)

sa%

1 Q

8

(b)

85



A nonplanar circuit.

5.8
4 Q

sa(d)

13 Q

12 Q
11 Q

1 Q

7 Q 2.8

3Q

10 Q

9Q
8 2

86



A Steps to Determin&leshCurrents:

1.
2.

Assigmmeshcurrentsiy, I,, .., I,to the n meshes.

ApplyKVLo eachof the n meshesUseOh mo s
law to expresghe voltagesin termsof the mesh
currents.

Solvethe resultingn simultaneous equation®
getthe meshcurrents.



Fig.3.17

A circuit with two meshes.

I R, 5
a —
AAAAY

i)
Vi (ﬁ r) § R,




A ApplyKVL tceachmesh.Formesh1,
-V, +RI,+R(I,-1,)=0

(R, + R,)i, - R,i, =V,
A Formesh2,
Ri,+V, +R(i,-1)=0
-RI +(R +R)I =-V
31 2 3 2

2



A Solvefor the meshcurrents.
&R, + R, - R gai
@ - R

A Usei for a meshcurrentand| for abranch
N . ;




A Find thebranch currenty, I,, andl,using
meshanalvsis.

I I
L 50 2 6Q
—A\WW\ AN——
[
10 Q

IS5V i) @ i §4Q

91



JFormeshl,

- 15+5i1+10(i1- i2)+10 =0

3, -

1

=1

" JFormesh2,

6i, + 4i, *10( -1 -

1

=20, -1

IWe canfind i;andl, by su

orCr a meute.ﬁl‘rml,: ]

10 = 0

nstitution method

| =1 | =
2 2 3

1

2



"IUsemeshanalysido find the currentlyin the
circuit.

93



A ApplyKVL tceachmesh.Formesh1,
- 24 +10(i, - i,)+12(i, - i) =0

111, - 51, - 61, =12

1 2 3

A Formesh2,
24i, + 4(i, - 1 )+10(1 - i)=0

- 51 +191 - 21 =0
1 2

3




" 'Formesh3, w12 - i)+ A -1 )=0

At node A I, =1,-1,,
4(i,-1,)+12 (i,- i) +4(i,-1,)=0
-1 -1 +21 =0

2 3

1

1In matrix from become

ell -5 -6gel,g ¢€l2¢g
e-5 19 - 2uUe& u=eQu

el -1 2UQ|8 QOU

we Cancalculusl, I,andi; byCr a meule,0 s
and findl,.



9.9 VIESTIATlAly SISVILIT CUlTert

Sources
A circuit with a current source.
4 Q) 3:£)
—NVVW AAAYAY

ov (&) q 60 ﬁ) (1) s5A
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NETWORKOPOLOGY



Graph Theory in Circuit Analysis

Suppose we wish to find the node voltages of the circuit below.

We know how to do this by hand.

For large-scale circuits, we may wish to do this via a computer
simulation (i.e. PSpice). We will need to express this circuit in
a standard form for input to the program.



Graph Theory in Circuit Analysis

@g

AVAYAY
4 5

Whether the circuit is input via a GUI or as a text file, at some
level the circuit will be represented as a graph, with elements
as edges and nodes as nodes.

For example, when entering a circuit into PSpice via a text file,
we number each node, and specify each element (edge) in the
circuit with its value and endpoints.



Graph of a Circuit

Here is a graph of the circuit. It is simply the circuit without elements.

We refer to the lines above as edges (and the nodes are nodes).

The graph provides connectivity information. To actually solve the
circuit using this graph, the types of elements forming the edges would
need to be provided.



Trees and Co-Trees

Atree is defined as any set of edges in a graph thattouches
every node without forming any closed paths.

Also known as Hamiltonian path!

Each tree has a co-tree, which is the set of edges not in the tree.



Cut Set

A cut set is a minimal set of edges that, when broken, breaks the
graph into two completely separate parts (two groups of nodes.

Minimal means that a cut set cannot contain another smaller cut
set that would break the graph into the same two parts.



Fundamental Cut Set

a

Suppose | am given a tree.

A fundamental cut set w.r.t. that tree Is a cut set that only
contains one branch of the tree.

There may be many fundamental cut sets w.r.t. a given tree.



Finding Fundamental Cut Sets Systematically

1. Redraw the graph with the tree in a straight line.
2. For each tree edge, form its fundamental cut set as follows:
2a) that tree edge is a member of this fundamental cut set
2b) cutthate d g e é whoagtoups of nodes are separated?
2c¢) the fundamental cut set also contains all edges in the co-tree
that connect these two groups.




Notes

A All of this can be done computationally.
A Graph algorithms

N

A Linear equation solution

A This algorithm shows why nodal analysis always works: you
get n-1 independent linear equations in n-1 unknowns.

A The fundamental cut sets ensure independence ofthe
equationsd unless the circuit has impossible elements.

A Each fundamental cut set contains a unique element (edge)
from the tree. So each KCL equation provides new info.

A The elements themselves could destroy the independence
(redundant dependent source, shorted voltages our c e
but this w o nh@gpen in real life circuits.



Example

0.75|
40 W *
+
120v( 5W§

Find the node voltages using the graph method.

Circuitfrom Ni | s E£lkeatrié Gircuits,Addison-Wesley, 1993.



UNITI I

SINGLPHASRCCIRCUITANDANALYSIS



Objectives: After completintipis
module,youshould be abl¢o:

A Describe tihe sinusoidal variatiom im zc currant ard voitags, and
calculate their ffactive values.

A Write and apply equatians for caliculating thes irclLetiva and
capacitive reactances far imndiuctons and capacitons iim &m & aicwit,

A Deseribe, wiith diagrams and eaualins, thee phase reialionshipdebr
eifeuits eoRtaiRIAg resistance, capacitance, AMd inductanca,



AlternatingCurrents

An alternating current:such as that:produced by a generator:has no

direction in the sensethat-direct.current -has. The magnitudes vary
sinusoldally with time- as given by:

AGvoltage and E, o
current

Vinax
E=E,xSINQ
| = 1haxSIN Q




RotatingVectorDescription

EmaxSIN g
450 /.

E =E, SIinq

800 2700 3600

450 900 1350

Radius = E, .,




Examplel: Fora particular deviceghe house ac/oltage

1S and theaccurrentis . Whataretheir
values?
Vo= 170 V

i =14.14 A ‘

+170Vio  -170V
14.1 Ato 114.1 A




PureResistancen ACCircuits

R
W Vimax f-. oltage
max [ Current
>
v
a.c. Source

Oh maw: ‘/eﬁf: /eﬁrR




ACandInductors

/ Inductor / / PRl

A

0.63 Current Rise Current Decay
0.371

T Time, ¢

Time, ¢

\/ /
leads’ (peaks before
\/oltage and current-are out:ofiphase




A Purelnductorin ACCircult

L Vinax

—Current

The reactance may be defimed as tihe nonrasistive corasition tootbieef idow aff smc
current.



InductiveReactance

The back emf induced by a changing /
current provides opposition to
current, called inductive reactance X,.

@V,
a.C.

Such losses are i2mparary, faweyvatrsshoeetbieecoureant chances direction,
periodically re-supplying energy so thatt m meitpevesris| asttimane: cycle.

[nductive reactance X, is a fumettoon aff aiththiee ircluetz2aardithiee
fracuency of the ac current.



Calculating InductivReactance

L In ive R n

X, =20fL UnitistheW

(A

ny : . -
= Ohm'slaw: V, =1iX,

The voltage reading / in the above cifeuit at theinsianitthiee ac euimentis /
can be found fiemthee inductance im | and e fragquancyim Hz.

VL — |(2p fL) Oh mbw: V = /izX




Example2: Acoil havingan inductance of IS

connectedo a , acsource.Neglecting
resistance, whaisthe effectivecurrent throughthe
coil?
Reactance: X, = 2pfl L=06H

X, = 20(@D Hiz)((DHY)

X, =226 0 )
120 V,60 Mz

for= 0.531A

Show that ttie> peak current is £,,, =0 78D



ACandCapacitance

g  Capacitor / Capacitor
Qmax / ______________________________

0.65/

Current Decay
0371 | :

‘T" Time, ¢




A PureCapacitonn ACCircuit

C

R B L7 — /Voltage

L@_T s f Current
Ny

pback emf




CapacitiveReactance

£nergy gains and losses are aliso
ternporary far capacitors due tothiee

C
| |
constantly changing ac current. % ‘ : I
Q)
a.C.

No riet power is lost im @ complete cycle, @ven thraugihtieccapamittor des powk
nonresistive oppaosition (r2aciance) ttothieslidow eff @¢ cumentt.

Capaditive reactance X is afeatest by dusthtblee czozzcitanc2aamtithiee
fracuerncy of the ac current.



CalculatingnductiveReactance

c itive R nce:
1 1|
1 -
XC =— UnitistheW
2p fC

Ohm'slaw: V. =iX_

The voltage reading / in the above cifeuit at theinsianitthiee 1 euiientis /
can be found fiamthe inductance im F and e fizgquancyim iz,

V = Oh mbaw: V= X

2p fL




Seried. RCCircuits

l—@j Series accircuit
Q (4)
o \_J
/ R C
5000 [ | | ]

Inductor: £, - ‘capacitor & resistor /R
Series anacsource




CalculatingrotalSourceVoltage

Treating) as wectons, wee fiirdi:

_ 2
vT_\/vR+(vL-v

tan f =

V. -V

L C

V

R

Now recall et : Ve = IRy VYV, = iX, el V- =/,

Substitution iint ttrec above vaolliage eguation gkes:

7 2
VTz.\/R +(X - X

)2




Impedance in al\CCircuit

; 2 2
A :|\/R (X, - X.)

[mpadance 7 is defined:

2 2
Z:\/R +(XL- XC)

Otim’s faw forr @ currentt and impedance: _ -V

The impedance is the combined opposition to ac current consisting of both
resistance and reactance.




Exampled. Find theeffective currentand the phase
anglefor the previousexample.

X, =226 Q); X-=332 ), R=600,72=1220
0.5 H
/.= 0.985 A ‘ @ 8 nt 1
120V
Next we find ttre2 phase angle: () /VWVW‘
60 Hz 60W

X FXe= 226+ 332 =-106 WW

X - X
R=60W tanf = ——=

R

continued




Exampled (Cont.): Findthe for the previous
example.

X - Xe= 226+ 332 =-106 W

R =60 tan f = —

f = -60.59

negative
capacitive




Resonantrequency




Exampleb: Findthe resonant frequencyor the
previous circuiexamplelL =.5H, C = &+

1 ResonanceX, = X;

" 2pALc 0.5H

o

120V _T
Resonantf, = 79.6 Hz 2 Hz 60 W
At resonant frequency, there is zero reactance ( ) and the circuit has

a phase angle of zero.



Powerin anACCircuit

In terms of ac voltage:

P=Vcosf

In terms of the resistance R:

P=ER

The fraction Cos 4 is known as the power factor.



Examples: What isthe averagepowerlossfor the
previousexampleV=120V,f =-60.2, 1=90.5A,andR

=60W.
P= FR= (0.0905 A)X&0 V) ResonanceX; =Xc
0.5H
‘AveragePz 0.491 W ‘ qy{ﬂm_-l-
O e
The power factor is: Cos 60.5" 120V —-l-
‘ Cosf = 0.492 or 49.2% ‘ >Hz  60W

nigher efficient



TheTransformer

A transformer is a device that uses induction and ac current to step
voltages up or down.

Induced e mf 6 s
are:

Transformer

a.C.
SN §3
Ny

EP:-NP_
Dt

ES:-NS_
Dt




TransformergContinued):

Transformer D F
EP = = NP -

Dt

D F
ES = - NS -

Dt

Recognizing that A¢/At is the same ih each coill, we: diik: fisitretasionrbly
second and obtain:

The transformer equation: EP N P




Example/: AgeneratorproduceslO Aat 600V.The primary
collin atransformerhas20turns. Howmanysecondaryturns
areneededto stepup thevoltageto 2400V?

Applying the transformer =10 A; V,=600V
equation:

<

-
o)

<

wn
wn

Ns= 80 turns

step-up transtormer




TransformelEfficiency

There is no power gain in stepping up the voltage since voltage is increased by

reducing current. In an ideal transformer with no internal losses:
here is no power gain in stepping up the voltage since voltage is increased by
reducing current. In an ideal transformer with no internal losses:

Ideal Transformer

An ideal transfamen::

The above equation assumesno internal energy losses dueto heat or flux

changes.

are usually between




Summary

Effective current: /.= 0.707 /...,

Effective voltage: V.z= 0.707 V.., ‘

In ive R

X, =2p0fL UnitistheW

Ohm'slaw: V, =iX,

Capacitive Reactance:
1

2p fC
Ohm'slaw: V. =1X .

X Unit istheW




SummaryCont.)

2 2
VT = \/VR +(VL 'Vc)

2 2
z:\/R (X, - X))




SummaryCont.)

@y
o

Powel in AC Clrcults:

Im tenm'ss of ac voltizge: Im terms of the resistance R:
P=Vcosf P=ER
——— 1

Transformars:




UNIT- IV

RESONANCE AMAGNETICIRCUIT



Resonance In Electric Circuits

Any passive electric circuit will resonate if it has an inductor
and capacitor.

Resonance is characterized by the input voltage and current
being in phase. The driving point impedance (or admittance)
Is completely real when this condition exists.

In this presentation we will consider (a) series resonance, and
(b) parallel resonance.
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Series Resonance

Consider the series RLC circuit shown below.

V=Vl 0 My

The input impedance is given by:

1
Z =R + j(wL- —)
wC

The magnitude of the circuit currentis;

P m
| :|| |:

140



At resonance we designate w as w, and write;

w

(0]

1

Jic

This is an [mportant equation to remember. It applies to both series

And parallel resonant circuits.
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The magnitude of the current response for the series resonance circuit
IS as shown below.

Vv

m

/'Jz_

Half power point

Bandwidth: l

BW = wgy =W, T Wy

142



The peak power delivered to the circuitis;

p=_m
R

The so-called half-power is given wher = Vi
2R

We find the frequencies, w, and w,, at which this half-power
occurs by using;

wC

2R = \/RZ (WL —)



After some insightful algebra one will find two frequencies atwhich
the previous equation is satisfied, they are:

W, =- —+ + —
x
2L \caL LC
an
d
2
R [aRgs 1
W = —+ _— F —
e 0)
2L \g2L: LC

The two half-power frequencies are related to the resonant frequency by

W, = Jww, |

144



The bandwidth of the series resonant circuit is given by;

R
BW=Wb=W2- Wl:f

We define the Q (quality factor) of the circuit as;

These are all important relationships.
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An Observation:

If Q> 10, one can safely use theapproximation,;

BW BW
W =w - —— and W, =w_+

These are useful approximations.
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An Observation:

By using Q =w,L/R in the equations for w;and w, we have,

e . z 17
é'l 41 6 L4

W =w é——+ o+
s o) 0 .
! OGZQ g2Q+ u
é U

and

e . 2 7]
1 al o .
w.=w é—+ |z—g +1U
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In order to get some feel for how the numerical value of Q influences
the resonant and also get a better appreciation of the s-plane, we consider
the following example.

It is easy to show the following for the series RLCcircuit.

1
— S
I(s) 1 L
V(s) Z(5s) s2+53+ 1
L LC

In the following example, three cases for the about transferfunction
will be considered. We will keep w, the same for all three cases.

The numerator gain,k, will (a) first be set k to 2 for the three cases, then
(b) the value of k will be set so that each response is 1 atresonance.



An Example lllustrating Resonance:

The 3 transfer functions considered are:

Qﬁﬁli kS
s> +2s+400
Case2: ‘
S
s®> +5s5+4 00
case 3:
ks

s> +10s+4 00
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An Example lllustrating Resonance:

The poles for the three cases are given below.
Case L.

S +2s+400=(s+1+ j19.97)(s+1- j19.97)

s° +55+400=(s+2.5+ j19.84)(s+2.5- j19.84)

s° +10s+400=(s+5+ j19.36)(s+5- j19.36)

150



Comments:

Observe the denominator of the CE equation.
R 1

s+ _s+
L LC

Compare to actual characteristic equation for Case 1.

2
S +2s5+400
Wo2 =400 > W=20 radssec
R W,
BW = — =2 rad/sec » Q= =10

L BW

151



Poles and Zeros In the s-plane:

(3)

(1)?( ............... g

(2)

p.
Yd

- 20

jw axis

s-plane

0 axis

Note the location of the poles
for the three cases. Also note
there is a zero at the origin.

2.5
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The frequency response starts at the origin in the s-plane.
At the origin the transfer function is zero because there isa
zero at the origin.

As you get closer and closer to the complex pole, which
has aj parts in the neighborhood of 20, the response starts
to increase.

The response continues to increase until we reach w =20.
From there on the response decreases.

We should be able to reason through why theresponse
has the above characteristics, using a graphical approach.

153



Matlab Program For The Stud

% name of program is
% written for 202 S2002,
%CASE ONEDATA:

K= 2;

numl = [K O]

denl = [1 2 400j
num2 = [KO0];

den2 = [1 5 400];
num3 = [K O];

den3 = [110 400];
w= .1:.1:60;

freqtest.m
wig

grid
H1 = bode(numl,denl,w);
magH1l=abs(H1);

H2 = bode(num2,den2,w);
magH2=abs(H2);

H3 = bode(num3,den3,w);
magH3=abs(H3);

plot(w,magH1, w, magH2, w,magH3)
grid

xlabel( 'w(rad/sec)’ )

ylabel( 'Amplitude’ )

gtext( 'Q = 10,4, 2')
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Program Output

=10, 4,2

0.9

it
oo

o
\]

o
o

Amplitude
o
ol

0.4
0.3 /
0.2 // \\
0:1 P /// \\l
/
10 20 30 © .
w(rad/sec)

60
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Comments: cont.

From earlier work:

< 2
[o] ~ ﬂ
W . W =W g_ol a_l 0 u
l’ 2_ o ., + %2 O +1\
€2Q c Q.
é U

With Q = 10, this gives;
w4=19.51 rad/sec, W, = 20.51 rad/sec

Compare this to the approximation:

w;=wyi BW=207 1=19rad/sec, w,=21rad/sec

So basically we can find all the series resonant parameters
if we are given the numerical form of the CE of the transfer

function.



Next Case: Normalize all responses to 1 atw,

1

N
| /| 1\\\ )

10
SIRT WAN
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Three dB Calculations:

Now we use the analytical expressions to calculate w; and w,
We will then compare these values to what we find from the

Matlab simulation.

Using the following equations with Q =2,

2

e 1 81 68
w,w =weé& +W |ge—0§ +1(
@ZQ c2Q =
we find,

w, = 15.62 rad/sec

w,=21.62 rad/sec

Q

158



Checking w, and w,

(cut-outs from the simulation)

15.3000
15.4000
15.5000
p» 15.6000
15.7000
15.8000

Wy

0.6779
0.6871
0.6964
0.7057
0.7150
0.7244

25.3000
25.4000
25.5000
p» 25.6000
25.7000
25.8000
25.9000

Ws

This verifies the previous calculations.

Now we shall look at Parallel Resonance.

0.7254
0.7195
0.7137
0.7080
0.7023
0.6967
0.6912
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Background

Consider the circuits shown below:

V

- ® sk i

—_—C
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‘Duality‘

el - 1 o e _ 1 o
= ,— + + < = P <
| VQRJ U V=1gR+ jwL +- N
é JWL & wC ¢
We notice the above equations are the same provided.:
| < >V :
If we make theinner-change,
then one equation becomes
1 the same as the other.
R = &
R For such case, we say theone
circuit is the dual of the other.
L =« > C
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Parallel Resonance

Background

What this means is that for all the equations we have
derived for the parallel resonant circuit, we can use
for the series resonant circuit provided we make

the substitutions:

1
R replaced be —
R

L replaced by C
C replaced by L
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Parallel Resonance

ALLS

Series Resonance

1

w =
°  4JJLC
Q=wRC
1
BW =w_ =——
RC
& 11 \/a 1 5 19
W11W2:e + &——0 t—u
&2RC  \g2RC + LC
€11 a16 o
W,Ww,=w e + |ee—0§ +10
* 42 2Q: o
§2Q e+
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Example 1: |Determine the resonant frequency for the circuit below.

/\N\I_

WL (R .
+
J ( jwC ) (- w'LRC + jwL )
/ = =
. _ 1 (1- w’LC )+ jwRC

R+ jwL +

jwC

At resonance, the phase angle of Z must be equal to zero.
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Analysis (- W:LRC + jwL )

(1- w’LC )+ jwRC

For zero phase;

wL ~ wWRC
(- wLCR) (1-w’'LC
This gives;
w’LC - w’R’C =1
or
1
W =

© J(LC - R'CY)
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Example 2:

A series RLC resonant circuit has a resonant frequency admittance of
2x10-2S(mohs). The Q of the circuit is 50, and the resonant frequency is

10,000 rad/sec. Calculate the values of R, L, and C. Find the half-power
frequencies and the bandwidth.

Eirst. R =1/G = 1/(0.02) = 50 ohms.

Second, from @ = W , we solve for L, knowing Q, R, and w,to

R
find L = 0.25 H.
50
Third, we canuse C = Q

— = =100 mF
w R 10,000 x50



Example 2: (continued)

6]

Eourth: Wecanuse W_ = = 200 rad /sec
Q 50

W 1x10 °

and

Eifth: Use the approximations;
W,= W, - 0.5wg, = 10,0007 100 = 9,900 rad/sec

W,= W, -0.5wg, = 10,000 + 100 = 10,100 rad/sec
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Peak Voltages and Resonance:

Vi Vi
+ -+ _
,\N\I O
R L
4 +

We know the following: |

1

When w =w, =
* LC
IS purely real and equal to R.

, Vgand | are in phase, the driving point impedance

A plot of |I| shows that it is maximum at w = w,. We know the standard
equations for series resonance applies: Q, wgy, €tc.

*
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Reflection:

A question that arises is what is the nature of Vg, V,, and V:? A little
reflection shows that Vris a peak value at w,. But we are not sure
about the other two voltages. We know that at resonance they are equal
and they have a magnitude of QxVs.

Irwin shows that the frequency at which the voltage across the capacitor
IS a maximum is given by;

The above being true, we might ask, what is the frequency at whichthe
voltage across the inductor is a maximum?

We answer this question by simulation




Series RLC Transfer Functions:

The following transfer functions apply to the series RLC circuit.

1
Ve(s) _ Lc -
=) V.9 .R,, L
L LC
V, () s*
= vy LR T
L LC
R
|:> VR(S)_ L o °
Vs (9) 32+Es+i

L LC
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Parameter Selection:

We select values of R, L. and C for this first case so that Q =2 and
w, = 2000 rad/sec. Appropriate values are; R = 50 ohms, L = .05 H,
C =5nt The transfer functions become as follows:

—

1

1

<

[@]

~ 4x10°

Vv s’+1000s+ 4x10°

S

SZ

<

L

Vv s?+1000s+ 4x10°

S

V, 1000s

Vv s®+1000s+ 4x10°

S
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Matlab Simulation:

% programis  freqcompare.m
% written for 202 S2002, wig

numC = 4e+6;
denC =[1 1000 4e+6];

numL= [1 0 O];
denL =[1 1000 4e+6];

numR =[1000 O];
denR =[1 1000 4e+6];

w = 200:1:4000;
grid

HC = bode(numC,denC,w);
magHC = abs(HC);

[

grid

HC = bode(humC,denC,w);
magHC = abs(HC);

HL = bode(numL,denL,w);
magHL = abs(HL);

HR = bode(humR,denR,w);
magHR = abs(HR);

grid

xlabel
ylabel(
title(

gtext(
gtext(

plot(w,magHC, 'k -',w, magHL,
('w(rad/sec) ')
'‘Amplitude’ )
' Rsesponse for RLC series circuit, Q
VC' )
VL' )
" VR")

gtext(

'k -- ', w, magHR,

|k:|

=2' )
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Simulation Results |
Rsesponse for RLC series circuit, Q=2

2.5
2

O
I

=
(6]

Amplitude
\
e
/

2500 3000 3500 4000

500 1000 1500 2000
w(rad/sec)

L85




Analysis of the problem:

Given the previous circuit. Find Q, Wg, Wax, [Vc| at Wy, and |V| at W,

Vg \'A
+ -+ —
I\N\I YY)
R=50 W L=5
+ mH +

1
Solution: W = = 2000 rad /sec

1
° JLCc  /50%x10 x5x10

w L 2x10°x5x10
Q —O0— =2
50
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Problem Solution:

1
w o =w_[1- = 0.934 w.
2Q
|VR |at w o= Q |VS | = 2x1 = 2volts ( peak )
X |V 2
IV latw = > 1V, | = = 2.066 volts (peak ))

1 0.968

4Q°

Now check the computer printout.
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Problem Solution (Simulation):

Maximum

1.0e+003 *

1.8600000 0.002065141
1.8620000 0.002065292
1.8640000 0.002065411
1.8660000 0.002065501
1.8630000 0002065560
1.8700000 0.002065588
1.8720000 0.002065585
1.8740000 0.002065552
1.8760000 0.002065487
1.8780000 0.002065392
1.8800000 0.002065265
1.8820000 0.002065107
1.8840000 0.002064917
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Simulation Results:

Rsesponse for RLC series circuit, Q =10

12
¢ Q=10
8
(D)
e}
2
S 6
=
<
4
2 - —
e
O — e NM"// - - S . | \&M—_‘__H
0 500 1000 1500 2000 2500 3000 3500 4000

w(rad/sec)
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Observations From The Study:

» Thevoltage across the capacitor and inductor for a series RLC circuit
IS not at peak values at resonance for small Q (Q <3).

N Even for Q<3, the voltages across the capacitor and inductor are
equal at resonance and their values will be QxVs.

N For Q>10, the voltages across the capacitors are for all practical
purposes at their peak values and will be QxVs.

N Regardless of the value of Q, the voltage across the resistor
reaches its peak value at w =wy,,.

For high Q, the equations discussed for series RLC resonance
can be applied to any voltage in the RLC circuit. For Q<3, this
IS not true.
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Given the following circuit: |

@ v

" We want to find the frequency, w,, at which the transfer function
for V/I will resonate.

The transfer function will exhibit resonance when the phaseangle
between V and | are zero.



The desired transfer functions is:

V. (1/sC)(R+sL)

I R+sL+1/sC

This equation can be simplified to;

V R+sL

| LCs’+RCs+1

Withs ———  jw

Vv R+ jwl

|_(1-wﬂxn+ij
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Resonant Condition:;

For the previous transfer function to be at a resonant point,
the phase angle of the numerator must be equal to the phase angle

of the denominator.

g =1gqg
num dem
or,
éWLf) _ 1é WRC 6
qnum =tan ' & _ 0, qden tan 2 (0]
Therefore;
wL w RC
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Resonant Condition Analysis:

Canceling the w 0 im the numerator and cross multiplying gives,

L(1- w’LC)=R?°C or w?’L°C=L- R°C

This gives,
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Resonant Condition Analysis:

What is the significance of w,and w, in the previous two equations?

Clearly w,is a lower frequency of the two. To answer this question, consider
the following example.

Given the following circuit with the indicated parameters. Write a
Matlab program that will determine the frequency response of the
transfer function of the voltage to the current as indicated.

R

|
g%
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Resonant Condition Analysis: Matlab Simulation:

We consider two cases:

Case 1: Case 2:
R =3o0ohms R=1ohms
C =6.25x10>°F C =6.25x10>°F
L=0.01H L=0.01H
w,= 2646 rad/sec w,= 3873 rad/sec

For both cases,

W, = 4000 rad/sec
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Resonant Condition Analysis: Matlab Simulation:

The transfer functions to be simulated are given below.

Case 1:

6.25x10 ®s®+1.875x10 "+1

V 0.001s+ 3
I

Case 2:

Vv 0.001s+1
|  6.25x10 %s?+6.25x10°°+1
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Rsesponse for Resistance in series with L then Parallel with C

[EEN
D

=
N

=
o

Amplitude

0o

";’ R=1 ohm
AR rad/car /
UV AU/ OCT U
- .
3 ohms /

1000 2000 3000 4000 5000 6000 7000 8000

w(rad/sec) 198



What can be learned from this example?

w,does not seem to have much meaning in this problem.
What is w,if R =3.99 ohms?

Just because a circuit is operated at the resonant frequency

does not mean it will have a peak in the response at the
frequency.

For circuits that are fairly complicated and can resonant,
It is probably easier to use a simulation program similar to
Matlab to find out what is going on in the circuit.
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MAGNETICIRCUITS




Magnetic and Electromagnetic Fields

Flux density

/ vector N T
Flux lines B 1 /Flux lines
@ B
(a) Permanent magnet (b) Field around a straight wire

carrying current /

Iron core
INWINWIN
\L/
N[ S
AN
. B
b V

(c) Field for a coil of wire

Figure 15.1 Magnetic fields can be visualized as lines of flux that form closed
paths. Using a compass, we can determine the direction of the flux lines at any
point. Note that the flux density vector B is tangent to the lines of flux.
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Magnetic
Materials

Iron, Cobalt and Nickel and various other alloys and
compounds made using these three basic elements
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Electric Current and Magnetic
Field

/|
B
~ m
-— \ S
1 B
1
/| l
(a) If a wire is grasped with the thumb (b) If a coil is grasped with the fingers
pointing in the current direction, the pointing in the current direction, the
fingers encircle the wire in the thumb points in the direction of the
direction of the magnetic field magnetic field inside the coil

Figure 15.2 lllustrations of the right-hand rule.
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A Few Definitions Related to
Electromagnetic Field

F (Unitis Weber (Wb)) = Magnetic Flux Crossing a Surface of
Area U Arom?2,

B (Unit is Tesla (T)) = Magnetic Flux Density = F/A
H (Unit is Amp/m) = Magnetic Field Intensity = _
m= permeability = mym

m,= 4p*10-7 H/m (H Y Henry) = Permeability of free space (air)
m = Relative Permeability

m>> 1 for Magnetic Material
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Amp ®rLaw s

The line integral of the magnetic field intensity around a closed path is
equal to the sum of the currents flowing through the area enclosed by
the path.

BH . dI= g i

H.dl = [H]|dl|cos q

Direction of
integration

$Hedl=1+1,

Figure 15.6 Ampere’s law states that the line integral of magnetic field intensity
around a closed path is equal to the sum of the currents flowing through the
surface bounded by the path.

193



Example of Amp ®rLawo s
Find the magnetic field along a circular path around an infinitely long
Conductor carrying U hrapere ofcurrent.

//—‘

H =
//Wire carrying

/ current out B ’ H
// of page r \\ 900
[
\\ //' dl
/
/
&\ Au

Figure 15.7 The magnetic field around a long straight wire carrying a current
can be determined with Ampeére’s law aided by considerations of symmetry.

Sinceboth 4, and H

are perpendicular to radius U mtéany point UA 6

on the circular path, the angle g is zero between them at all points. Also since all
the points on the circular path are equidistant from the current carrying
conductor

IS constant at all points o nthe circle
H

T T : |

gH.dl = [H|pdl = [H[2pr =1 °" [H|=

2 pr

H

magckt
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Magnetic Circuits

AThey are basically ferromagnetic structures(mostly Iron, Cobalt,
Nickel alloys and compounds) with coils wound around them

MBecause of high permeability most of the magnetic flux isconfined
within the magnetic circuit

AThus is always aligned with

AExampleHs: Transformers, Actuators, Bectrodm @@y 9, Electric Machines
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Magnetic Circuits (1)

N W

|= mean length
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Magnetic Circuits (2)

F =NI= Magneto Motive Force or MMF = # of turns * Current passing
through it

F = NI =HI (why!)

B F
or —1| =NI or ——1 =NI
m mA
NI
o g -__ "
| /(MA)
NI
or F -
A

A = Reluctance of magnetic path
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Analogy Between Magnetic and Electr
Circuits

I s

F =MMF is analogous to Electromotive force (EMF) =E
F = Fluxis analogous to | = Current

A = Reluctance is analogous to R = Resistance

_ 1
p =Permeance  _ — - Apalogous to conductance G
A

;U||—\
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Magnetization Curves

saturation
B knee
A B A
Linear \
H H
Magnetization curve Magnetization curve
(linear) (Ideal) (non-linear) (Actual)

(see also Fig. 1.6 in the text)
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Magnetization Curves(2)

AOne can linearize magnetic circuits by including air-gaps

Adowever that would cause a large increase in ampere-turn
requirements.

Ex: Transformers d o nhave air-gaps. They have very little
magnetizing current (5% of full load)

Induction motors have air-gaps. They have large magnetizing
current (30-50%)

Question: why induction motors have air i gap and
transformersd on 6t ?

200



Magnetization Circuits with Air-
gap

: L ; g Ni d
AC: A — F — , ,
chc m.A AC+Ag

Ni =H_ I .+H/l, A. = A, = wd (Neglecting fringing )
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Fringing

With large air-gaps, flux tends to leak outside the air i gap. This is

called fringing which increases the effective flux area. One way to
approximate this increase is:

w,=w+l d, =d+Il A, =w.d,
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Example of Magnetic Circuits On
Greenboard



Magnetization Curves (for examples)

Flux density, B (tesla)

14
13
1.2
11
1.0
0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1

Silicon

sheet st'eel 7]

/7

Cast steel

Cast iron ~:

:
=

e

200

Field intensity, H (At/m) —=

400

500

800

1000

204



Inductance(L)

Definition: Flux Linkage(l ) per unit of current(l) in a magnetic circuit

A\ 4

sl » . .

N
F=— |

—
s e . .

\ L=

A
N 2
A
Thus inductance depends on the geometry of construction
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Example of Inductances On
Greenboard
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How to find exact Inductances with
magnetic circuit with finite thickness
(say a torroid with finite thickness)

see problem 1.16
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F ar a dlawobEectromagnetic
Induction

The EMF (Electromotive Force) induced in a magnetic circuitis
Equal to the rate of change of flux linked with the circuit

dl d(NF dF
_d(NF) _dF

e =
dt dt dt
7 Li =NF
dLi di
\'e=—=L —

dt dt
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L e n aws

The polarity of the induced voltage is givenby L e n law s

The polarity of the induced voltage will be such as to oppose the very
cause to which it is due

Thus sometimes we write

dLi di
\ e=- — =-L —
dt dt
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A precursor to Transformer

F , F =F ,, Sin(wt)
V =V, Cos(w)
—>
+
e
| -
|deally
dF
e=-N —=-NF wCos (Wt)=-E Cos(wt)=-V Cos(wt)
dt

. NF NF _Sin(wt) |
| = —— = =1 _Sin(wt)
L L
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A Precursor to Transformer(2)

100

50

-100

100

50

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.002

0.004

0.006

0.008

time

0.01

0.012

0.014

0.016
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Example on excitation of magnetic
circuit with sinusoidal flux On
greenboard
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Example on excitation of magnetic
circuit with square flux on greenboarc
(Important for Switched Mode Power

Supplies)
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What will non-linearity in magnetic
circuit lead to?

At would cause distortion in current waveforms sinceby Far aday 6 s
and L e n fa#@ the induced voltage always has to balance out the
applied voltage that happens to be sinusoidal
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Sinusoidal voltage non-
sinusoidal current

ZF, A = turns

a)

@D () and

P
> D s

‘nl

)
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Iron Losses in Magnetic Circuit

There are two types of iron losses
a) Hysteresis losses

b) Eddy Current Losses

Total iron loss is the sum of these two losses
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Hysteresis losses

f = — i
T .
f =frequency ' ]
of sine source /Q
B

B-H or Hysteresis loop

>
>

U UV

saturation

knee point m
| . s

B, = Retentive flux density (due to property of retentivity)
H.= Coercive field intensity (due to property of coercivity)
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Hysteresis losses (2)

AThe lagging phenomenon of B behind H is called hysteresis

Arhe tip of hysteresis loops can be joined to obtain the
magnetization characteristics

An each of the current cycle the energy lost in the coreis
proportional to the area of the B-H loop

AEnergy lost/cycle =V g,

FHdB

AP, = Hysteresis loss = V. BHAB = KnB"maxf

ki, = Constant, n = 1.5-2.5, B,,,,= Peak flux density

magckt
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Eddy current loss

< ..———Laminations

flux

flux < durrent N
\/

N

N

Because of time variation of flux flowing through the magnetic
material as shown, current is induced in the magnetic material,
following F a r a dlawTdis current is called eddy current.

The direction of the current is determined by L e n zaw. his current
can be reduced by using laminated (thin sheet) iron structure, with
Insulation between the laminations.

APE = Eddy current loss = koB2,.f
k. = Constant v Bpa= Peak flux density
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Permanent Magnets

AAlloys of Iron, Cobalt and Nickle

Adave large B-H loops, with large B, andi H,

MDue to heat treatment becomes mechanically hard and arethus
called HARD IRON

Aield intensity is determined by the coercive field requiredto
demagnetize it

KOperating points defined by B,,,H,, in the second quadrant of
the B-H loop

220



Using Permanent Magnets for
providing magnetic field

i

SOFT IRON

SOFT IRON
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Designing Permanent Magnets

AThe key issue here is to minimize the volume V,, of material
required for setting up a required By in a given air gap

At can be shown that V,, =B,2V,/ §B,H, (see derivation in text)
where V= Agl, Volume of air-gap,l, = length of air-gap, Ay =area
of air-gap

AThus by maximizing B,,, H,, product V,, can be minimized

AOnce B,,, H,, at the maximum B,,, H, product point are known, |, =length of
permanent magnet, A, =area of permanent magnet can be found as

A=-IlH/MH,( appl yi nglavhbmp r eods
AA=B,A,/B., (same flux flows through PM as well as air-gap)
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Finding the maximum product point

1.4

11.2

- Demagnetization curve for

Neodymium-iron-boron magnet 1

o o o
IN o)) o
B(Tesla)

\
o
N

1000  -800 -600 -400 -200 0
H(KA/m)
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Finding the maximum product point (

B= mH+c, m and c are constants.

Tofind maximum BH product, we need to differentiate
BH=mH?+cH;

and set it equal to 0. Thus we get

H,,=-c/2m. and B, =c/2
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Finding the maximum product point (

Answer:

B, =0.64 T,H,, = -475 kA/m
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UNITFV

NETWORKHEOREMS



Introduction

Thischapterintroduces important |
fundamentaltheoremsof network analysis.
Theyarethe

Superpositiontheorem

T h ®v e n theor@ms

Nor t otheoran

MaXximum power transfertheorem
Substitution Theorem

Mi | | m daheoiemns
Reciprocitytheorem



Superpositionrheorem

Usedto find the solution to networks with t\o or

more sources
currentthroug

nat are not in seriesor parallel The
N, Or voltageacross,an element in a

network 1S eo

ual to the algebraic sum of the

currents or voltagesproduced independently by
each source Sincethe effect of eachsourcewill
be determined Independently,the number of
networksto be analyzedwill equalthe numberof

sources



Superpositionrheorem

c T h e total power deliveredo aresistive
mustbe determinedusing thetotal current
throughor the total voltage acrosthe element
andcannot be determinedby a simplesum of
the powerlevels establisheby eachsource.



Thev e n i Thedrem




Thev e n i Thedrem

R e d u c ethe numberof componentsequiredto
establish thesamecharacteristicat the output
terminalsinvestigatethe effectofchanginga
particular componenton the behaviorof anetwork
without havingto analyzehe entire network after each
change.




Thev e n i Thedrem

C Procedure taleterminethe proper values of
RrnandEr,
C Preliminary

1. Removethat portion of the network across whichthe Thévenin
equation circuit isto be found. In thefigure below, this requires
that the load resistorR_be temporarily removed fromthe

network.




Thev e n i Thedrem

2. Markthe terminals ofthe remainingtwo-terminal
network. (The importance of thistepwill become
obvious asve progresghroughsomecomplex
networks.)

R

3. CalculateRy, by first settingall sourcego zero(voltage
sourcesarereplacedby shortcircuits,and current
sourcedoy opencircuits)and thenfindingthe resultant
resistance betweethe two markedterminals.(If the
Internal resistancef the voltageand/or currentsources
IS included irthe originalnetwork, it must remairnwhen
the sourcesare set tozero.)



Thev e n i Thedrem

B

4. CalculateEy by first returning allsources taheir original
positionand finding theopen-circuitvoltagebetween
the markedterminals. (Thistepisinvariablythe one
that will leadto the most confusioranderrors. In all
caseskeepin mindthat it isthe open-circuit potential
betweenthe two terminalsmarkedin step2.)



Thev e n i Theoem

Conclusion: |
InsertFigure9.26(b)

5. Drawthe Thevenin
equivalentcircuitwith
the portionof the circuit
previouslyremoved
replacedbetweenthe
terminals of the
equivalentcircuit. This
stepisindicatedby the
placementof the
resistorR betweenthe
terminals of the
Thévenin equivalent
circuit.



