OPERATING SYSTEM

JYOTHISHMATHI INSTITUTE OF TECHNOLOGY AND SCIENCE

SHAIK MUNAWAR ASSOCIATE PROFESSOR,CSE

PISK ALLOCATION METHORS

ALLOCATION METHODS - CONTIGUOUS

- An allocation method refers to how disk blocks are allocated for files:
- Contiguous allocation each file occupies set of contiguous blocks
 - + Best performance in most cases
 - + Simple only starting location (block #) and length (number of blocks) are required
 - Problems include finding space for file, knowing file size, external fragmentation, need for compaction off-line (downtime) or on-line

CONTIGUOUS ALLOCATION

Mapping from logical to physical

Block to be accessed = Q + starting address Displacement into block = R

CONTIGUOUS ALLOCATION OF DISK SPACE

directory

file	start	length
count	O	2
tr	14	3
mail	19	6
list	28	4
f	6	2

EXTENT-BASED SYSTEMS

Many newer file systems (i.e., Veritas File System) use a modified contiguous allocation scheme

Extent-based file systems allocate disk blocks in extents

- An extent is a contiguous block of disks
 - + Extents are allocated for file allocation
 - + A file consists of one or more extents

ALLOCATION METHODS - LINKED

- Linked allocation each file a linked list of blocks
 - + File ends at nil pointer
 - No external fragmentation
 - Each block contains pointer to next block
 - No compaction, external fragmentation
 - + Free space management system called when new block needed
 - + Improve efficiency by clustering blocks into groups but increases internal fragmentation
 - + Reliability can be a problem
 - Locating a block can take many I/Os and disk seeks
- FAT (File Allocation Table) variation
 - + Beginning of volume has table, indexed by block number
 - + Much like a linked list, but faster on disk and cacheable
 - New block allocation simple

LINKED ALLOCATION

Each file is a linked list of disk blocks: blocks may be scattered anywhere on the disk

block =	pointer	

LINKED ALLOCATION

* Mapping

Block to be accessed is the Qth block in the linked chain of blocks representing the file. Displacement into block = R + 1

LINKED ALLOCATION

FILE-ALLOCATION TABLE

ALLOCATION METHODS - INDEXED

Indexed allocation

+ Each file has its own index block(s) of pointers to its

EXAMPLE OF INDEXED ALLOCATION

INDEXED ALLOCATION (CONT.)

- Need index table
- * Random access
- Dynamic access without external fragmentation, but have overhead of index block
- * Mapping from logical to physical in a file of maximum size of 25@K bytes and block size of 512 bytes. We'nted only 1 block for index table

Q = displacement into index table

R = displacement into block

INDEXED ALLOCATION - MAPPING (CONT.)

- Mapping from logical to physical in a file of unbounded length (block size of 512 words)
- Linked scheme Link blocks of index table (no limit on size)

LA / (512 x 511)
$$< Q_1$$

 Q_1 = block of index table R_1 is used as follows:

 Q_2 = displacement into block of index table R_2 displacement into block of file:

INDEXED ALLOCATION - MAPPING (CONT.)

Two-level index (4K blocks could store 1,024 four-byte pointers in outer index -> 1,048,567 data blocks and file size of up to 4GB)

LA / (512 x 512)
$$R_1$$

 Q_1 = displacement into outer-index R_1 is used as follows:

 Q_2 = displacement into block of index table R_2 displacement into block of file:

INDEXED ALLOCATION - MAPPING (CONT.)

