#### JYOTHISHMATHI INSTITUTE OF THECHNOLOGY AND SCIENCE NUSTHULPUR ,KARIMNAGAR



#### FORMAL LANGUAGES AND AUTOMATA THEORY PUSHDOWN AUTOMATA(PDA)

G.SINDHUSHA ASST. PROFESSOR CSE DEPT.

#### Pushdown Automata (PDA)

#### PDA - the automata for CFLs

- What is?
  - FA to Reg Lang, PDA is to CFL
- PDA == [ε -NFA + "a stack"]

Why a stack?



## Pushdown Automata -Definition

#### • A PDA P := ( $Q, \Sigma, \Gamma, \delta, q_0, Z_0, F$ ):

- Q: states of the ε-NFA
- ∑: input alphabet
- Γ : stack symbols
- δ: transition function
- q<sub>0</sub>: start state
- Z<sub>0</sub>: Initial stack top symbol
- F: Final/accepting states

old state input symb. Stack top

new state(s) new Stack top(s)

## **δ** : The Transition Function

 $\delta(q,a,X) = \{(p,Y), ...\}$ 



a is the next input symbol

X is the current stack top symbol

 $δ: Q \times \Sigma \times \Gamma => Q \times \Gamma$ 

Y is the replacement for X; it is in  $\Gamma^*$  (a string of stack symbols)

i. Set 
$$Y = \varepsilon$$
 for: Pop(X)

- If Y=X: stack top is ii. unchanged
- If  $Y=Z_1Z_2...Z_k$ : X is popped iii. and is replaced by Y in reverse order (i.e., Z<sub>1</sub> will be the new stack top)



|      | Y = ?             | Action                                                         |
|------|-------------------|----------------------------------------------------------------|
| i)   | Υ=ε               | Pop(X)                                                         |
| ii)  | Y=X               | Pop(X)<br>Push(X)                                              |
| iii) | $Y = Z_1 Z_2 Z_k$ | Pop(X)<br>Push(Z <sub>k</sub> )<br>Push(Z <sub>k-1</sub> )<br> |
|      |                   | Push(Z <sub>2</sub> )<br>Push(Z <sub>1</sub> )                 |

### Example

Let  $L_{wwr} = \{ww^{R} | w \text{ is in } (0+1)^{*}\}$ 

- CFG for L<sub>wwr</sub> : S==> 0S0 | 1S1 | ε
- PDA for L<sub>wwr</sub> :
- $P := (Q, \sum, \Gamma, \delta, q_0, Z_0, F)$ 
  - $= ( \ \{q_0, \ q_1, \ q_2\}, \{0,1\}, \{0,1,Z_0\}, \delta, q_0, Z_0, \{q_2\})$

#### Initial state of the PDA:



| 1. | $\delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}$ |
|----|-----------------------------------------|
| 2. | $\delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\}$ |

First symbol push on stack

3. 
$$\delta(q_0, 0, 0) = \{(q_0, 00)\}$$
  
4.  $\delta(q_0, 0, 1) = \{(q_0, 01)\}$ 

PDA for L

$$\delta(q_0, 0, 1, 0) = \{(q_0, 10)\}$$

6. 
$$\delta(q_0, 1, 1) = \{(q_0, 11)\}$$

7. 
$$\delta(q_0, \epsilon, 0) = \{(q_1, 0)\}$$

9. 
$$\delta(q_0, \epsilon, Z_0) = \{(q_1, Z_0)\}$$

10. 
$$\delta(q_1, 0, 0) = \{(q_1, \varepsilon)\}$$

11. 
$$\delta(q_1, 1, 1) = \{(q_1, \epsilon)\}$$

12. 
$$\delta(\mathbf{q}_1, \varepsilon, Z_0) = \{(\mathbf{q}_2, Z_0)\}$$

Grow the stack by pushing new symbols on top of old (w-part)

Switch to popping mode, nondeterministically (boundary between w and w<sup>R</sup>)

Shrink the stack by popping matching symbols (w<sup>R</sup>-part)

Enter acceptance state

#### PDA as a state diagram

 $\delta(q_i, a, X) = \{(q_j, Y)\}$ 



#### PDA for L<sub>wwr</sub>: Transition Diagram



This would be a non-deterministic PDA

# Example 2: language of balanced paranthesis



To allow adjacent blocks of nested paranthesis

## Example 2: language of balanced paranthesis (another design)





## PDA's Instantaneous Description (ID)

A PDA has a configuration at any given instance: (q,w,y)

- q current state
- w remainder of the input (i.e., unconsumed part)
- y current stack contents as a string from top to bottom of stack

If  $\delta(q,a, X) = \{(p, A)\}$  is a transition, then the following are also true:

- (q, a, X) |--- (p,ε,A)
- q, aw, XB ) |--- (p,w,AB)
- --- sign is called a "turnstile notation" and represents one move
- |---\* sign represents a sequence of moves

# How does the PDA for L<sub>wwr</sub> work on input "1111"?



There are two types of PDAs that one can design: those that accept by final state or by empty stack

### Acceptance by...

#### PDAs that accept by final state:

 For a PDA P, the language accepted by P, denoted by L(P) by *final state*, is: Checklist:

• {w |  $(q_0, w, Z_0)$  |---\*  $(q, \varepsilon, A)$  }, s.t.,  $q \in F$ 

- input exhausted?
- in a final state?

#### PDAs that accept by empty stack:

For a PDA P, the language accepted by P, denoted by N(P) by *empty stack*, is:

• {w |  $(q_0, w, Z_0)$  |---\*  $(q, \varepsilon, \varepsilon)$  }, for any  $q \in Q$ .

Q) Does a PDA that accepts by empty stack Checklist: need any final state specified in the design?

- input exhausted?
- 15 - is the stack empty?

## Summary

#### PDAs for CFLs and CFGs

- Non-deterministic
- Deterministic
- PDA acceptance types
  - 1. By final state
  - 2. By empty stack
- PDA
  - IDs, Transition diagram
- Equivalence of CFG and PDA
  - CFG => PDA construction
  - PDA => CFG construction