JYOTHISHMATHI INSTITUTE OF THECHNOLOGY AND SCIENCE NUSTHULPUR ,KARIMNAGAR

G.SINDHUSHA
ASST. PROFESSOR
CSE DEPT.

Pushdown Automata (PDA)

PDA - the automata for CFLs

- What is?
- FA to Reg Lang, PDA is to CFL
- PDA == [ε-NFA + "a stack"]
- Why a stack?

Pushdown Automata Definition

- A PDA P := (Q, $\left.\Sigma, \Gamma, \delta, \mathrm{q}_{0}, Z_{0}, F\right)$:
- Q: states of the ε-NFA
- \sum : input alphabet
- Γ : stack symbols
- δ : transition function
- q_{0} : start state
- Z_{0} : Initial stack top symbol
- F: Final/accepting states
$\delta: Q \times \Sigma \times \Gamma=>Q \times \Gamma$

δ : The Transition Function

$$
\delta(q, a, X)=\{(p, Y), \ldots\}
$$

state transition from q to p a is the next input symbol X is the current stack top symbol Y is the replacement for X; it is in Γ^{*} (a string of stack symbols)

Set $Y=\varepsilon$ for: $\operatorname{Pop}(X)$
If $Y=X$: stack top is unchanged
iii. If $Y=Z_{1} Z_{2} \ldots Z_{k}$: X is popped and is replaced by Y in reverse order (i.e., Z_{1} will be the new stack top)

$$
\begin{array}{ll}
& \mathrm{Y}=? \\
\text { i) } & \mathrm{Y}=\varepsilon \\
\text { ii) } & \mathrm{Y}=\mathrm{X} \\
\text { iii) } & \mathrm{Y}=\mathrm{Z}_{1} \mathrm{Z}_{2} \cdot . \mathrm{Z}_{\mathrm{k}}
\end{array}
$$

ii) $\quad Y=X$
Pop(X) Push(X)

Push $\left(Z_{k}\right)$
$\operatorname{Push}\left(Z_{k-1}\right)$
Push $\left(Z_{2}\right)$
Push $\left(Z_{1}\right)$

Example

Let $L_{w w r}=\left\{w w^{R} \mid w\right.$ is in $\left.(0+1)^{*}\right\}$

- CFG for $L_{\text {wwr }}$: $\quad S==>0 S 0|1 S 1| \varepsilon$
- PDA for $L_{\text {wwr }}$:
- $P:=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$
$=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\},\left\{0,1, Z_{0}\right\}, \delta, q_{0}, Z_{0},\left\{q_{2}\right\}\right)$

Initial state of the PDA:

PDA for $\mathrm{L}_{\text {wwr }}$

$\left.\begin{array}{lll}\text { 1. } & \delta\left(q_{0}, 0, Z_{0}\right)=\left\{\left(q_{0}, 0 Z_{0}\right)\right\} \\ \text { 2. } & \delta\left(q_{0}, 1, Z_{0}\right)=\left\{\left(q_{0}, 1 Z_{0}\right)\right\}\end{array}\right\}$

First symbol push on stack

Grow the stack by pushing new symbols on top of old (w-part)

Switch to popping mode, nondeterministically (boundary between w and wi)

Shrink the stack by popping matching symbols ($w^{\text {R}}$-part)

Enter acceptance state

PDA as a state diagram

$$
\delta\left(q_{i}, a, X\right)=\left\{\left(q_{j}, Y\right)\right\}
$$

PDA for $\mathrm{L}_{\text {wwr }}$: Transition Diagram

Grow stack
(

Pop stack for matching symbols

$$
0,0 / \varepsilon
$$

$$
1,1 / \varepsilon
$$

$$
\Gamma=\left\{Z_{0}, 0,1\right\}
$$

$$
Q=\left\{q_{0}, q_{1}, q_{2}\right\}
$$

Switch to
popping mode

This would be a non-deterministic PDA

Example 2: language of balanced paranthesis

$$
\text { Grow stack } \left.\begin{array}{l}
\begin{array}{l}
\text { Pop stack for } \\
\text { matching symbols }
\end{array} \\
\begin{array}{l}
\sum=\{(,)\} \\
\Gamma=\left\{\mathrm{Z}_{0},(\}\right.
\end{array} \\
\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}
\end{array}\right]
$$

To allow adjacent blocks of nested paranthesis

Example 2: language of balanced paranthesis (another design)

PDA's Instantaneous Description (ID)

A PDA has a configuration at any given instance: (q,w,y)

- q - current state
- w - remainder of the input (i.e., unconsumed part)
- y - current stack contents as a string from top to bottom of stack
If $\delta(q, a, X)=\{(p, A)\}$ is a transition, then the following are also true:
- (q, a, X) |--- (p,,A)
- (q, aw, XB) |--- (p,w,AB)
|--- sign is called a "turnstile notation" and represents one move
|---* sign represents a sequence of moves

How does the PDA for $L_{w w r}$ work on input "1111"?

There are two types of PDAs that one can design:
those that accept by final state or by empty stack

Acceptance by...

- PDAs that accept by final state:
- For a PDA P, the language accepted by P, denoted by $L(P)$ by final state, is:

$$
\cdot\left\{w\left|\left(q_{0}, w, Z_{0}\right)\right|---^{*}(q, \varepsilon, A)\right\}, \text { s.t., } q \in F
$$

Checklist:

- input exhausted?
- in a final state?
- PDAs that accept by empty stack:
- For a PDA P, the language accepted by P, denoted by $N(P)$ by empty stack, is:
- $\left\{\mathrm{w}\left|\left(\mathrm{q}_{0}, \mathrm{w}, \mathrm{Z}_{0}\right)\right|--{ }^{*}(\mathrm{q}, \varepsilon, \varepsilon)\right\}$, for any $\mathrm{q} \in \mathrm{Q}$.
Q) Does a PDA that accepts by empty stack need any final state specified in the design?

Checklist:

- input exhausted?
- is the stack empty?

Summary

- PDAs for CFLs and CFGs
- Non-deterministic
- Deterministic
- PDA acceptance types

1. By final state
2. By empty stack

- PDA
- IDs, Transition diagram
- Equivalence of CFG and PDA
- CFG => PDA construction
- PDA => CFG construction

