JYOTHISHMATHI INSTITUTE OF TECHNOLOGY AND SCIENCE ,NUSTULAPUR,KARIMNAGAR

FLOW THROUGH PIPES

FLUID MECHANICS AND HYDRAULIC MACHINERY S.CHANDRA SHEKHAR ASST.PROFF
II.B.TECH IISEM MECHANICAL

ACADEMIC YEAR 2018-2019

How big does the pipe have to be to carry a flow of $\mathrm{x} \mathrm{m} 3 / \mathrm{s}$?
What will the pressure in the water distribution system be when a fire hydrant is open?
Can we increase the flow in this old pipe by adding a smooth liner?

Viscous Flow in Pipes: Overview

$>$ Boundary Layer Development
$>$ Turbulence
$>$ Velocity Distributions
$>$ Energy Losses
$>$ Major
$>$ Minor
$>$ Solution Techniques

Laminar and Turbulent Flows

$>$ Reynolds apparatus

Boundary layer growth: Transition length

What does the water near the pipeline wall experience?
Drag or shear
Why does the water in the center of the pipeline speed up? Conservation of mass
Non-Uniform Flow

Entrance Region Length

$$
\frac{l_{e}}{D}=f(\mathrm{Re}) \longrightarrow \frac{l_{e}}{D}=0.06 \mathrm{Re} \quad \frac{l_{e}}{D}=4.4(\mathrm{Re})^{1 / 6}
$$

Distance for
velocity l_{e} / D profile to develop

Shear in the entrance region vs shear in long pipes?

						\ldots
					\sim	
	/			-		
	ρ		\cdots			
	-	-				
	7					
	A					
	1					
\bigcirc	$8 \quad 8$	$\frac{8}{8}$	8^{8}	ρ	9^{8}	8^{8}
	laminar		Re		turbu	ulent

Velocity Distributions

$>$ Turbulence causes transfer of momentum from center of pipe to fluid closer to the pipe wall.
$>$ Mixing of fluid (transfer of momentum) causes the central region of the pipe to have relatively uniform velocity (compared to laminar flow)
$>$ Close to the pipe wall, eddies are smaller (size proportional to distance to the boundary)

Log Law for Turbulent, Established

 Flow, Velocity Profiles$$
\begin{gathered}
\frac{u}{u_{*}}=2.5 \ln \frac{y u_{*}}{v}+5.0 \text { Dimensional analysis and measurements } \\
\text { Valid for } \frac{y u_{*}}{v}>20 \\
u_{*}=\sqrt{\frac{\tau_{0}}{}} \quad \text { Turbulence produced by shear! }
\end{gathered}
$$

Shear velocity Velocity of large eddies

$$
\begin{aligned}
\tau_{0} & =\frac{\gamma h_{\mathrm{f}} d}{4 l} \\
u_{*} & =\sqrt{\frac{g h_{\mathrm{f}} d}{4 l}}
\end{aligned}
$$

Force balance

$$
u_{*}=V \sqrt{\frac{f}{8}}
$$

Pipe Flow: The Problem

$>$ We have the control volume energy equation for pipe flow
$>$ We need to be able to predict the head loss term.
$>$ We will use the results we obtained using dimensional analysis

Viscous Flow: Dimensional Analysis

$>$ Remember dimensional analysis?

$$
C_{p} \frac{D}{l}=f\left(\frac{\varepsilon}{D}, \operatorname{Re}\right) \quad \text { Where } \operatorname{Re}=\frac{\rho V D}{\mu} \quad \text { and } \quad \mathrm{C}_{p}=\frac{-2 \Delta p}{\rho V^{2}}
$$

$>$ Two important parameters!
$>$ Re - Laminar or Turbulent
$>\varepsilon / D-$ Rough or Smooth
$>$ Flow geometry

$>$ internal in a bounded region (pipes, rivers): find C_{p}
$>$ external flow around an immersed object: find C_{d}

Pipe Flow Energy Losses

$$
\begin{aligned}
& \mathrm{f}=\left(C_{p} \frac{D}{L}\right)=f\left(\frac{\varepsilon}{D}, \operatorname{Re}\right) \quad \frac{\text { Dimensional Analysis }}{\rho g h_{l}=-\Delta p-\rho g \Delta z} \\
& \mathrm{C}_{p}=\frac{-2 \Delta p}{\rho V^{2}} \quad \rho g h_{l}=-\Delta p \quad \mathrm{C}_{p}=\frac{2 g h_{l}}{V^{2}} \leftarrow \text { More general } \\
& \mathrm{f}=\frac{2 g h_{\mathrm{f}}}{V^{2}} \frac{D}{L} \\
& h_{\mathrm{f}}=\mathrm{f} \frac{L}{D} \frac{V^{2}}{2 g} \\
& \mathrm{f}=8 \frac{u_{*}^{2}}{V^{2}} \\
& \frac{\text { Always true (laminar or turbulent) }}{\text { Darcy-Weisbach equation }} \\
& h_{\mathrm{f}}=8 \frac{L}{D} \frac{u_{*}^{2}}{2 g}
\end{aligned}
$$

Friction Factor : Major losses

$>$ Laminar flow
$>$ Turbulent (Smooth, Transition, Rough)
$>$ Colebrook Formula
$>$ Moody diagram
$>$ Swamee-Jain

Laminar Flow Friction Factor

$$
\begin{gathered}
V=\frac{\rho g D^{2}}{32 \mu} \frac{h_{l}}{L} \\
h_{\mathrm{f}}=\frac{32 \mu L V}{\rho g D^{2}} \\
h_{\mathrm{f}}=\mathrm{f} \frac{L}{D} \frac{V^{2}}{2 g}
\end{gathered}
$$

$$
\frac{32 \mu L V}{\rho g D^{2}}=\mathrm{f} \frac{L}{D} \frac{V^{2}}{2 g}
$$

$$
\mathrm{f}=\frac{64 \mu}{\rho V D}=\frac{64}{\operatorname{Re}}
$$

Hagen-Poiseuille

$$
Q=\frac{\pi D^{4}}{128 \mu} \frac{\rho g h_{l}}{l}
$$

Darcy-Weisbach
f independent of roughness!
Slope of -1 on log-log plot

Turbulent Flow: $h_{\mathrm{f}}=\mathbf{f} \frac{\boldsymbol{L}}{\boldsymbol{D}} \frac{\boldsymbol{V}^{2}}{2 g}$ Smooth, Rough, Transition

$>$ Hydraulically smooth pipe law (von Karman,

$$
\frac{1}{\sqrt{f}}=2 \log \left(\frac{\operatorname{Re} \sqrt{f}}{2.51}\right)
$$ 1930)

> Rough pipe law (von Karman, 1930)

$$
\frac{1}{\sqrt{\mathrm{f}}}=2 \log \left(\frac{3.7 D}{\varepsilon}\right)
$$

$>$ Transition function for both smooth and rough pipe laws (Colebrook)
$u_{*}=V \sqrt{\frac{\mathrm{f}}{8}}$

(used to draw the Moody diagram)

Moody Diagram

Swamee-Jain

>1976
$>$ limitations
$>\varepsilon / \mathrm{D}<2 \times 10^{-2}$
$>\mathrm{Re}>3 \times 10^{3}$
$>$ less than 3% deviation from results obtained with Moody diagram
$>$ easy to program for computer or calculator

$$
\begin{gathered}
Q=\frac{-\pi}{\sqrt{2}} D^{5 / 2} \sqrt{\frac{g h_{\mathrm{f}}}{L}} \log \left(\frac{\varepsilon}{3.7 D}+2.51 \nu \sqrt{\frac{L}{2 g h_{\mathrm{f}} D^{3}}}\right) \\
\text { Colebrook } \\
\left.D=0.66 \left\lvert\, \varepsilon^{1.25}\left(\frac{L Q^{2}}{g h_{\mathrm{f}}}\right)^{4.75}+v Q^{9.4}\left(\frac{L}{g h_{\mathrm{f}}}\right)^{5.2}\right.\right]^{0.04}
\end{gathered}
$$ use

Each equation has two terms. Why?

Pipe roughness

pipe material	pipe roughness $\varepsilon(\mathrm{mm})$	
glass, drawn brass, copper	0.0015	
commercial steel or wrought iron	0.045	
asphalted cast iron	$0.12 \quad \frac{\varepsilon}{d} \quad$ Must be	
galvanized iron	$0.15 \quad$ dimensionless!	
cast iron	0.26	
concrete	$0.18-0.6$	
rivet steel	$0.9-9.0$	
corrugated metal	45	
PVC	0.12	

Solution Techniques

-find head loss given (D, type of pipe, Q)

$$
\begin{aligned}
& \operatorname{Re}=\frac{4 Q}{\pi D v} \quad \mathrm{f}=\frac{0.25}{\left[\log \left(\frac{\varepsilon}{3.7 D}+\frac{5.74}{\mathrm{Re}^{0.9}}\right)\right]^{2}} \quad h_{\mathrm{f}}=\mathrm{f} \frac{8}{\pi^{2} g} \frac{L Q^{2}}{D^{5}} \\
& \text { ofind flow rate given (head, D, L, type of pipe) }
\end{aligned}
$$

$$
Q=\frac{-\pi}{\sqrt{2}} D^{5 / 2} \sqrt{\frac{g h_{\mathrm{f}}}{L}} \log \left(\frac{\varepsilon}{3.7 D}+2.51 v \sqrt{\frac{L}{2 g h_{\mathrm{f}} D^{3}}}\right)
$$

-find pipe size given (head, type of pipe,L, Q)

$$
\left.D=0.66 \left\lvert\, \varepsilon^{1.25}\left(\frac{L Q^{2}}{g h_{\mathrm{f}}}\right)^{4.75}+v Q^{9.4}\left(\frac{L}{g h_{\mathrm{f}}}\right)^{5.2}\right.\right)^{0.04}
$$

Sudden Contraction

$>$ Losses are reduced with a gradual contraction
$>$ Equation has same form as expansion equation!

Entrance Losses

Losses can be reduced by

 accelerating the flow gradually and eliminating the vena contracta

Head Loss in Bends

High pressure
$>$ Head loss is a function of the ratio of the bend radius to the pipe diameter (R/D)
$>$ Velocity distribution returns to normal several pipe diameters downstream

Low pressure

$$
h_{b}=K_{b} \frac{V^{2}}{2 g}
$$

Head Loss in Valves

$>$ Function of valve type and valve position
$>$ The complex flow path through valves can result in high head loss (of course, one of the purposes of a valve is to create head loss when it is not fully open)
Can K_{v} be greater than 1 ? Yes!

What is V?

$h_{v}=K_{v} \frac{V^{2}}{2 g}$

$$
h_{v}=K_{v} \frac{8 Q^{2}}{g \pi^{2} D^{4}}
$$

Solution Techniques

$>$ Neglect minor losses
\Rightarrow Equivalent pipe lengths
$>$ Iterative Techniques
$>$ Using Swamee-Jain equations for D and Q
$>$ Using Swamee-Jain equations for head loss

- Assume a friction factor
$>$ Pipe Network Software

Solution Technique: Head Loss

$>$ Can be solved explicitly

$$
h_{\text {minor }}=\sum K \frac{V^{2}}{2 g} \quad h_{\text {minoor }}=\frac{8 Q^{2}}{g \pi^{2}} \sum \frac{K}{D^{4}}
$$

$$
\operatorname{Re}=\frac{4 Q}{\pi D \nu} \quad f=\frac{0.25}{\left[\log \left(\frac{\varepsilon}{3.7 D}+\frac{5.74}{\mathrm{Re}^{0.9}}\right)\right\rfloor} \quad h_{\mathrm{f}}^{2}=\mathbf{f} \frac{8}{g \pi^{2}} \frac{L Q^{2}}{D^{5}}
$$

$$
h_{l}=\sum h_{\mathrm{f}}+\sum h_{\text {minor }}
$$

Find D or Q Solution Technique 1

- Assume all head loss is major head loss
\longrightarrow Calculate D or Q using Swamee-Jain equations
$>$ Calculate minor losses $\quad h_{e x}=K \frac{8 Q^{2}}{g \pi^{2} D^{4}}$
$>$ Find new major losses by subtracting minor losses from total head loss $\quad h_{f}=h_{t}-\sum h_{\text {ex }}$
$e=\frac{-\pi}{\sqrt{2}} D^{5 / 2} \sqrt{\frac{g h_{L}}{L}} \log \left(\frac{\varepsilon}{3.7 D}+2.51 V \sqrt{\frac{L}{2 g h_{t} D^{3}}}\right)$

Find D or Q

Solution Technique 2: Solver

$>$ Iterative technique

$>$ Solve these equations

$$
\begin{gathered}
\operatorname{Re}=\frac{4 Q}{\pi D V} \quad \mathrm{f}=\frac{0.25}{\left[\log \left(\frac{\varepsilon}{3.7 D}+\frac{5.74}{\operatorname{Re}^{0.9}}\right)\right]^{2}} \quad h_{\mathrm{f}}=\mathrm{f} \frac{8}{g \pi^{2}} \frac{L Q^{2}}{D^{5}} \\
h_{\text {minor }}=K \frac{8 Q^{2}}{g \pi^{2} D^{4}} \quad \begin{array}{l}
\text { Use goal seek or Solver to } \\
\text { find discharge that makes the } \\
\text { calculated head loss equal } \\
\text { the given head loss. }
\end{array} \\
h_{l}=\sum h_{\mathrm{f}}+\sum h_{\text {minor }} \quad \underline{\text { Spreadsheet }}
\end{gathered}
$$

Find D or Q

Solution Technique 3: assume f

$>$ The friction factor doesn't vary greatly
$>$ If Q is known assume f is 0.02 , if D is
known assume rough pipe law $\quad \frac{1}{\sqrt{f}}=2 \log \left(\frac{3.7 D}{\sigma}\right)$
$\rightarrow>$ Use Darcy Weisbach and minor loss equations
$>$ Solve for Q or D
$>$ Calculate Re and ε / D
$>$ Find new f on Moody diagram
$>$ Iterate

Example: Minor and Major Losses

$>$ Find the maximum dependable flow between the reservoirs for a water temperature range of $4^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$.
Water

25 m elevation difference in reservoir water levels
Reentrant pipes at reservoirs
Standard elbows
Sudden contraction
Gate valve wide open
1500 m of 6 " PVC pipe
Spreadsheet
Directions

Example (Continued)

$>$ What are the Reynolds numbers in the two pipes? $90,000 \& 125,000 \quad \varepsilon / \mathrm{D}=0.0006,0.0008$
$>$ Where are we on the Moody Diagram?
$>$ What is the effect of temperature?
$>$ Why is the effect of temperature so small?
$>$ What value of K would the valve have to produce to reduce the discharge by 50% ?

Example (Continued)

$>$ Were the minor losses negligible? Yes
$>$ Accuracy of head loss calculations? 5\%
$>$ What happens if the roughness increases by a factor of 10 ? \quad f goes from 0.02 to 0.035
$>$ If you needed to increase the flow by 30% what could you do? Increase small pipe diameter

Pipe Flow Summary (1)

$>$ Shear increases _linearly with distance from the center of the pipe (for both laminar and turbulent flow)
$>$ Laminar flow losses and velocity distributions can be derived based on momentum (Navier Stokes) and energy conservation
$>$ Turbulent flow losses and velocity distributions require experimental results

Pipe Flow Summary (2)

$>$ Energy equation left us with the elusive head loss term
$>$ Dimensional analysis gave us the form of the head loss term (pressure coefficient)
$>$ Experiments gave us the relationship between the pressure coefficient and the geometric parameters and the Reynolds number (results summarized on Moody diagram)

Pipe Flow Summary (3)

$>$ Dimensionally correct equations fit to the empirical results can be incorporated into computer or calculator solution techniques
$>$ Minor losses are obtained from the pressure coefficient based on the fact that the pressure coefficient is constant at high Reynolds numbers
$>$ Solutions for discharge or pipe diameter often require iterative or computer solutions

Directions

$>$ Assume fully turbulent (rough pipe law)
$>$ find f from Moody (or from von Karman)
$>$ Find total head loss (draw control volume)
$>$ Solve for Q using symbols (must include minor losses) (no iteration required)

$$
h_{l}=\sum h_{\mathrm{f}}+\sum h_{\text {minor }} \quad \underline{\text { Solution }}
$$

Pipe roughness

Find Q given pipe system

$$
\begin{aligned}
& h_{\text {minor }}=K \frac{8 Q^{2}}{g \pi^{2} D^{4}} \quad h_{f}=\mathbf{f} \frac{8}{g \pi^{2}} \frac{L Q^{2}}{D^{5}} \\
& h_{l}=\sum h_{\mathrm{f}}+\sum h_{\text {minor }} \\
& h_{l}=\frac{8 Q^{2}}{g \pi^{2}}\left[\sum\left(\mathrm{f} \frac{L}{D^{5}}\right)+\sum\left(\frac{K}{D^{4}}\right)\right] \\
& Q=\pi \sqrt{\frac{g}{\left.\sum \sum\left(\mathbf{f} \frac{L}{D^{5}}\right)+\sum\left(\frac{K}{D^{4}}\right)\right]}}
\end{aligned}
$$

