JYOTHISHMATHI INSTITUTE OF TECHNOLOGY AND SCIENCE NUSTULAPUR, KARIMNAGAR

K.RAJA PRANAV KUMAR
 Assistant Professor Department Of Mechamical Engineering

KINEMATICS OF MACHINERY (CAM AND FOLLOWER)

Cam and Follower

- The cam and follower is a device which can convert rotary motion (circular motion) into
linear motion (movement in a straight line).

Followers
(valves)

A follower is a component which is designed to move up and down as it follows the edge of the cam.

Knife edge
Follower
Off set
Roller follower

follower

The 'bumps' on a cam are called lobes.
The square cam illustrated has four lobes, and lifts the follower four times each revolution.

Square cam

Examples of other rotary cam profiles.

Examples of a Rotary cams in operation.

Control the movement of the engine valves.

The linear cam moves backwards and forwards in a reciprocating motion.

- Cams can also be cylindrical in shape
- Below a cylindrical cam and roller follower.

Cam rise and Fall

- The cam follower does not have to move up and down - it can be an oscillating lever as shown above.

1. Cycloidal : acceleration is zero at the beginning and end of motion
2. Parabolic: constant acceleration
3. Simple harmonic: a sine wave motion

Lift

Displacement: cycloidal, period is four time than acceleration's

Velocity: period is double than acceleration's

Acceleration: sine wave

Figure 7.17 Comparison of displacement, velocity, and acceleration for follower motions.

Displacement

Velocity

Acceleration

Function

Follower displacement (mmm):

Follower velocity (mmss):

Follower acceleration ($\mathrm{mm} / \mathrm{s}^{\wedge}$) :

Follower jerk (mm/s ${ }^{\wedge}$):

Length (mm):
47.7465

Maximumat:
120°
60°
30°

00
60°

A cam is required such that the follower rises 50 mm in 120° of cam rotation, dwells for 60°, returns in 120°, and dwells for 60°. The cam angular velocity is constant at 60 rpm . The requirements are displayed in Fig. P6.17,
(b) Determine the maximum follower velocity (in mm/sec)

Function

Follower displacement (mm):

Follower velocity (mms):

Follower acceleration (mm/s ${ }^{\wedge}$):

Follower jerk (mms \mathbf{s}^{\wedge}):

Length (mm):

Absolute maximum:

50

300
2827.43
53295.9
47.7465

Maximum at:
120°

Figure 7.16 Cycloidal motion.

Lift

$$
s^{*}=L\left(\frac{\theta^{*}}{\beta}-\frac{1}{2 \pi} \sin \frac{2 \pi \theta^{*}}{\beta}\right)
$$

$L=50 \mathrm{~mm}$
$\theta^{*}=60^{\circ}$
$\left(\theta^{*}\right)^{\prime}=w$
$V_{\text {max }}=\left(s^{*}\right)^{\prime}=L\left(\frac{w}{\beta}-\frac{1}{2 \pi} * \frac{2 \pi w}{\beta} * \cos \frac{2 \pi \theta^{*}}{\beta}\right)=L^{*} \frac{w}{\beta} *\left(1-\cos \frac{2 \pi \theta^{*}}{\beta}\right)$
$V_{\max }=\left(s^{*}\right)^{\prime}=50 \mathrm{~mm} * \frac{360^{\circ}}{\sec } * \frac{1}{120^{\circ}} *\left(1-\cos \frac{2 \pi^{*} 60^{\circ}}{120^{\circ}}\right)=300 \mathrm{~mm} / \mathrm{sec}$

A cam is required such that the follower rises 50 mm in 120° of cam rotation, dwells for 60°, returns in 120°, and dwells for 60°. The cam angular velocity is constant at 60 rpm . The requirements are displayed in Fig. P6.17.
(c) Determine the maximum follower acceleration (in mm/ sec2)

$$
V_{\text {max }}=\left(s^{*}\right)^{\prime}=L\left(\frac{w}{\beta}-\frac{1}{2 \pi} * \frac{2 \pi w}{\beta} * \cos \frac{2 \pi \theta^{*}}{\beta}\right)=L^{*} \frac{w}{\beta} *\left(1-\cos \frac{2 \pi \theta^{*}}{\beta}\right)
$$

$$
\partial_{\text {max }}=\left(s^{*}\right)^{\prime \prime}=L^{*} \frac{w}{\beta} *\left(-\cos \frac{2 \pi \theta^{*}}{\beta}\right)^{\prime}=L^{*} \frac{w}{\beta} * \frac{2 \pi w}{\beta} * \sin \frac{2 \pi \theta^{*}}{\beta}=L^{*}\left(\frac{w}{\beta}\right)^{2} * 2 \pi * \sin \frac{2 \pi \theta^{*}}{\beta}
$$

$$
\begin{aligned}
& \theta^{*}=30^{\circ} \\
& \beta=120^{\circ}
\end{aligned}
$$

$\partial_{\text {max }}=50 \mathrm{~mm} *\left(\frac{360^{\circ}}{\sec }\right)^{2} *\left(\frac{1}{120^{\circ}}\right)^{2} * \sin \frac{2 \pi * 30^{\circ}}{120^{\circ}}=2827 \mathrm{~mm} / \mathrm{s}^{2}$
Acceleration

(d) What is the magnitude of the displacement at 220° of cam rotation?

$$
\begin{gathered}
s^{*}=L\left(1-\frac{\theta^{*}}{\beta}+\frac{1}{2 \pi} \sin \frac{2 \pi \theta^{*}}{\beta}\right) \quad 0 \leq \theta^{*} \leq \beta \\
s^{*}\left(\theta^{*}=220^{\circ}\right)=s^{*}\left(\theta^{*}=40^{\circ}\right)=L\left(1-\frac{\theta^{*}}{\beta}+\frac{1}{2 \pi} \sin \frac{2 \pi \theta^{*}}{\beta}\right)_{\left(\theta^{*}=40^{\circ}\right)} \\
=50 \mathrm{~mm}^{*}\left(1-\frac{40^{\circ}}{120^{\circ}}+\frac{1}{2 \pi} \sin \frac{2 \pi * 40^{\circ}}{120^{\circ}}\right)=40.2 \mathrm{~mm} \\
\text { Displacement }
\end{gathered}
$$

follower rises 50 mm in 120° of caln rotation, dwells for 60°, returns in 120°, and dwells for 60°. The cam angular velocity is constant at 60rpm. The requirements are displayed in Fig. P6.17.

(d) Are there infinite spikes in the jerk profile? If so, at what locations?

No

Base circle diameter: 30 mm Offset: 0
Roller diameter: 10 mm
Angular velocity: 10rad/s
0-120 degree SHM lifi • -
120-270 degree dwe!
270-360 degree paral
Plot cams with three?
knife edge, flat face, roilean

design steps:

1 Specify the displacement diagram, base circle diameter, and follower type.
2. Draw the displacement diagram.
a) Draw the prime circle tangent to the zero follower displacement axis. Th

b) Divide the displacement diagram in several intervals.

Six intervals: 0-40; 40-80; 80-120; 120-300; 300-330; 330-360
c) Divide the prime circle in the same number of intervals as the displacement diagram.
3. Draw parallel lines from the displacement diagram to the follower home position. Each line represents the rise of the follower at that specific interval.

4. Invert the mechanism, fix the cam and move the follower around the cam in the opposite direction to the cam rotation. This is done by drawing circles about the centre of the prime circle, the radius at each circle are the displacements of the follower.
5. Draw the cam profile inside the envelope of the follower

Flat face follower:

Draw lines which are tangent to follower displacement circles

Extend the tangent lines and make them intersect. Connect the midpoints using spline lines to get the cam profile

Roller follower:

Home position is the centre of the roller. The prime circle is tangent to the roller.

Make sure the connect line is tangent with both roller circles.

